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Abstract—Electroencephalography (EEG) is probably the 

most popular non-invasive technique for the acquisition of brain 

signals. Despite its ease of use and moderate costs, this technique 

intrinsically suffers from poor spatial resolution, which is 

known to be caused by the combinations of the volume 

conduction effect and crosstalk phenomena. While the first one 

is caused by the propagation of a source signal through different 

biological tissues, the second one relates to the positioning of the 

electrodes on the scalp, manifesting as a spurious electric signal 

involving a set of neighboring electrodes even in absence of true 

brain activity. The presence of such a spurious signal not only 

contributes to the spatial blurring of EEG-based scalp maps, but 

is also known to alter brain connectivity estimate. In this work, 

the simultaneous engagement of adjacent electrodes typical of 

crosstalk was used to characterize this phenomenon in terms of 

network harmonics with respect to the graph structure 

describing the positioning of the electrodes on the scalp. In this 

perspective, a tailored graph filter could be used to mitigate the 

effects of crosstalk and improve the accuracy of multivariate 

brain connectivity maps. As to do so, this work investigates the 

effects of different graph filtering procedures on two different 

datasets: a set of EEG-like data recorded on a polystyrene 

mannequin (representing a null-case scenario for causal 

connectivity) and a real EEG dataset recorded from a healthy 

subject during the execution of simple hand movements. 
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I. INTRODUCTION 

Network theory and its applications are nowadays 

essential tools characterizing the cutting-edge of different 
scientific fields. The ubiquity of graph-structured data across 

various disciplines encouraged the development of 

innovative strategies with the aim to bridge the gap between 

signal processing and graph-structured data [1]. In the last 

few years Graph Signal Processing (GSP) rapidly emerged as 

a pioneering branch of information theory providing tailored 

solutions to problems involving data defined on irregular 

domains [2]. From a signal processing perspective, GSP 

successfully contributed to an important step forward in 

different fields, from telecommunications to modern 

biomedicine [1], [3]. 

In the field of brain imaging, for instance, it is a well-
established practice to investigate the relationship between 

brain signals in a multivariate set (such as those originating 

from functional magnetic resonance images and 

electroencephalography) to infer a graph structure that 

captures specific features of the input dataset [3], [4]. 

However, despite the excellent resolution in time, ease of use 

and moderate costs that made electroencephalography (EEG) 

one of the most popular techniques for the acquisition of brain 

signals, the poor spatial resolution characterizing EEG-based 

scalp maps still represents a huge drawback for this 

neuroimaging technique. In fact, the electric activity of 

different brain sources cannot be accurately separated on the 

scalp due to the combination of the well-known volume 

conduction effect with crosstalk phenomena. 
More in detail, the effects of volume conduction manifest 

when an electric potential is recorded at a certain distance 

from its generator and a conductive medium fills the space 

between the source and the receiver [5]. As for the specific 

case of an EEG recording, the medium includes biological 

tissues (e.g. the cerebrospinal fluid, skull and scalp) which 

both conduct and scatter the electric activity of a given neural 

source, causing the signal to spread over the scalp instead of 

being circumscribed to a restricted area above the neural 

source. On the other hand, crosstalk phenomena are 

intimately related to both the number and the positioning of 

the electrodes on the scalp. In considering the human scalp as 
a conductive layer, it is reasonable to assume that the electric 

activity recorded by a specific electrode is not circumscribed 

to the area underneath the electrode itself, but interferes with 

the electric activity of its neighbors [6]. This phenomenon, 

known as “crosstalk”, is often misinterpreted as a causal 

influence among nearly positioned electrodes that exists even 

in absence of a true underlying brain activity [7]. High-

density EEG setups (from 64 to 256 electrodes) are, in 

general, more prone to be corrupted by crosstalk, since the 

distance between adjacent electrodes is reduced given the 

presence of a high number of sensors placed on the scalp. The 
simultaneous engagement of adjacent electrodes implicitly 

describes a smooth spatial variability that could be used to 

characterize crosstalk phenomena from a GSP perspective. 

Specifically, given the spatial dependence characterizing 

crosstalk phenomena, modern GSP techniques can be used to 

describe electrodes’ crosstalk in terms of network harmonics 

and design tailored graph filters that mitigates undesired 

contribution in the original signal. In line with this, this work 

proposes a GSP-based approach to investigate the 

contribution of different network harmonics on two different 

datasets: a set of EEG-like data recorded from a mannequin 

and a set of true EEG signals extracted from a healthy subject 
involved in the execution of simple hand movements. As to 

mimic both the conductivity of the human skin and the effects 

of crosstalk, EEG-like signals were acquired by placing a wet 

towel between the head of the mannequin and the EEG cap, 

allowing to consider the EEG-like time series as a null-case 

scenario for functional connectivity analysis (since they do 

not reflect the presence of a true underlying brain activity 

while being corrupted by crosstalk). The Graph Fourier 

Transform (GFT) spectrum of the EEG-like data will then be 
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used to identify network harmonics that largely contribute to 

mannequin’s EEG (which are expected to characterize the 

effects of crosstalk) and design a tailored graph filter to 

mitigate their contribution. The effects of such a filtering 

procedure will be finally investigated on a real EEG dataset 
by means of multivariate connectivity estimate. 

 

II. MATERIALS AND METHODS 

A. Graph signal processing principles 

Given an undirected graph 𝐺(𝑁,𝐸) with vertex set 𝑁 and 
edge set 𝐸, a graph signal is a mapping 𝒙: 𝑁 → 𝑅 that assigns 
a real value to each vertex [1], [8]. A graph signal can thus be 
represented as a vector 𝒙 ∈ 𝑅𝑁  in which each entry 

𝑥(𝑛), 𝑛 = 1, . . . 𝑁  stores the value of the signal at the 𝑛𝑡ℎ 
vertex of the network. The GFT of a graph signal is then 
defined as its projection onto the eigenbasis of the Laplacian 
matrix associated with 𝐺(𝑁, 𝐸) [9]. More in detail, given the 
eigen-decomposition of the Laplacian matrix 𝐿 = 𝑉𝛬𝑉−1 , 
the GFT for the graph signal 𝒙 writes  

𝐺𝐹𝑇(𝒙) = 𝒚 = 𝑉−1𝒙 (1)  

 
where 𝒚 ∈ 𝑅𝑁  stores the GFT coefficients for the graph 
signal x, 𝑉 ∈ 𝑅𝑁×𝑁 is the orthogonal matrix whose columns 
are the eigenvectors of 𝐿, the superscript −1  denotes the 
inverse matrix and 𝛬 ∈ 𝑅𝑁×𝑁  is a diagonal matrix whose 
entries are the eigenvalues of 𝐿. 

Similarly to the Fourier Transform for signals in time 
domain, an ideal graph filter 𝐹(𝛬) ∈ 𝑅𝑁×𝑁  is a diagonal 
matrix whose entries are either 0 or 1 depending on the GFT 
coefficients to discard or preserve [8]. This allows to rewrite 
the GFT coefficients of the graph signal 𝒙 as 

𝒚 = 𝐹(𝛬)𝒚⏟  
𝒚̃

+ (𝐼 − 𝐹(𝛬))𝒚⏟        
𝒚̂

 
(2)  

 
where 𝒚̃ ∈ 𝑅𝑁  contains the GFT coefficients that 𝐹(𝛬) 
leaves unaltered, 𝒚̂ ∈ 𝑅𝑁  collects the GFT coefficients 
corresponding to the suppressed network harmonics and 𝐼 ∈
𝑅𝑁×𝑁  is the identity matrix of order 𝑁 . The graph filtered 
version of the original signal can then be recovered by 
applying the inverse transformation that projected 𝒙 onto the 
eigenbasis of the Laplacian matrix to the filtered set of GFT 
coefficients 

𝒙̃ = 𝑉(𝐹(𝛬)𝒚) = 𝑉(𝐹(𝛬)(𝑉−1𝒙)) (3)  

 
In this perspective, the ideal filter 𝐹(𝛬) could be designed ad 
hoc to suppress undesired network harmonics in the graph 
signal 𝒙. 

B. Distance-based Laplacian matrix 

The relative distance between each pair of electrodes was 
used to extract a graph representation for the EEG acquisition 
cap. Specifically, being 𝑁 be the number of electrodes placed 
on the scalp, a diffusion kernel was used to modulate the 
normalized Euclidean distance between each pair of 
electrodes. This procedure allowed to construct a full square 

symmetric matrix of order 𝑁  whose (𝑖, 𝑗)𝑡ℎ  element 
approaches 1 if the electrode 𝑖 is close to the electrode 𝑗 (and 
vice versa) and vanishes to 0 as their distance increases. The 

corresponding binary adjacency matrix A ∈ 𝑅𝑁×𝑁  was 
obtained maintaining the 25% of the strongest links and the 
normalized Laplacian matrix was then extracted using the 
Spectral And Random walK (SPARK) toolbox for (di)graphs 
[10] as 

𝐿𝑛𝑜𝑟𝑚 =  𝐼 − 𝐷
−
1
2A𝐷−

1
2 (4)  

 
where 𝐼 ∈ 𝑅𝑁×𝑁 is the order 𝑁 identity matrix and 𝐷 ∈ 𝑅𝑁×𝑁 
is a diagonal matrix whose entries correspond to the degree of 
each node (i.e. the degree matrix associated with A). 

C. Crosstalk as a slow-varying graph signal 

Since crosstalk affects groups of adjacent electrodes, its 

contribution could be modelled as a (spurious) common mode 

signal involving a subset of nearly positioned electrodes. The 
simultaneous involvement of adjacent electrodes implicitly 

describes a signal with similar values on adjacent nodes or, in 

other words, a smooth spatial variability with respect to the 

underlying domain. In GSP, the spatial variability of a graph 

signal is captured by its total variation, which measures the 

smoothness of a given signal with respect to the underlying 

network structure [1], [9] . 

In this perspective, it is reasonable to model crosstalk 

phenomena as a linear combination of network harmonics 

with a small total variation which, in other words, represent 

graph signals that vary slowly with respect to the underlying 

graph. A properly designed graph filter could then be used to 
mitigate the contribution of crosstalk on real EEG data by 

attenuating the expression of slow-varying network 

harmonics in the original signal. 

 

D. Energy-based graph filter design 

Since mannequin’s EEG only reflects the contribution of 

electrodes’ crosstalk and given that crosstalk is supposed to 

be properly modelled as a linear combination of slow-varying 

network harmonics, it is reasonable to hypothesize for the 

energy of the mannequin’s GFT spectrum to be largely 

expressed with a few slow-varying harmonics. In this 

perspective, a properly designed graph filter could be used to 

mitigate the contribution of undesired network harmonics, 

which are expected to be largely expressed in the GFT 

spectrum of the EEG-like signals. 

As to do so, we split the total energy of the mannequin’s 

GFT spectrum in two according to the median-split criterion 
before the application of an ideal high-pass graph filter that 

suppresses the contribution of the lower part of the spectrum 

[3]. The ideal graph filter is thus designed to have cutoff 

frequency equal to the median network harmonic 𝑛̅  and 

elements on the main diagonal equal to 

 

𝑑𝑖𝑎𝑔(𝐹𝐻(𝛬)) = {
1, 𝑛 > 𝑛̅
0, 𝑛 ≤ 𝑛̅

 (5)  

 

Then, the low- and high-pass graph-filtered versions of the 

mannequin’s EEG can be respectively extracted as 

{
𝑋𝐿 = 𝑉[(𝐼 − 𝐹𝐻)(𝑉

−1𝑋)]

𝑋𝐻 = 𝑉[𝐹𝐻(𝑉
−1𝑋)]

 (6)  
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where 𝐹𝐻  is the ideal high-pass graph filter with cut-off 

frequency 𝑛̅. Both the low- (𝑋𝐿) and high-pass (𝑋𝐻) filtered 

versions of the original signal will then be used to investigate 
how the application of the graph filter described in Eq.5 

affects the presence of crosstalk-induced spurious links in 

causal connectivity estimate. 

E. EEG-like signal acquisition 

EEG-like signals were recorded using a 30-electrode cap 
placed on the head of a polystyrene mannequin. Specifically, 

data were acquired for 2 minutes at a sampling frequency of 

250 𝐻𝑧 using a BrainAmp amplifier (Brain Products GmbH, 

Germany). Reference and ground electrodes were placed on 

left and right mastoid respectively and the impedances were 

kept below 5 𝑘𝛺 during the whole recording session. 

In order to mimic the conductivity of the human skin, a 

wet towel was placed between the head of the mannequin and 

the EEG cap as shown in Fig.1. Lastly, data were z-scored 

before the extraction of multivariate functional connectivity. 

F. EEG data from real scenario 

Both the EEG amplifier and electrode cap introduced in 

Section E were then used to record a set of real EEG data 

from a right-handed healthy subject (female, 37  y.o.) 

involved in the execution of simple hand tasks. The 
participant signed an informed consent and experiments took 

place at the Neuroelectrical Imaging and Brain Computer 

Interface Laboratory at Fondazione Santa Lucia IRCCS in 

Rome, Italy, where the study was approved by the local ethics 

board (CE PROG.752/2019). 

The experimental session consisted of four runs during 

which the participant sat in a comfortable chair while visual 

cues were presented on a screen in front of her. Each run 

comprises 20 task (8s duration) and 20 rest (4s duration) trials 

presented in a pseudo-random order. During task runs, the 

subject was asked to perform a simple finger extension 

movement with either the right or left hand (respectively 
indicated as ExtR and ExtL). Task trials began with a 4s-

preparatory period, after which a go stimulus occurs, and the 

participant was asked to perform the required task for the 

remaining part of the trial. Instead, in rest trials the participant 

was asked to stay relaxed for the whole duration of the trial. 

During the inter-trial interval, a fixation cross was displayed 

for 3𝑠 in the middle of the screen 

G. EEG data preprocessing and functional connectivity 

estimation 

Both EEG-like and real brain signals were band-pass 

filtered within [3 − 60] 𝐻𝑧 and the power-line interference 

was removed using a 50 𝐻𝑧 notch filter. For real EEG data 

only, an Independent Component Analysis (ICA) was carried 

out to remove ocular artifacts and a semiautomatic procedure 

based on a fixed threshold criterion (±80 𝜇𝑉) was then used 

to reject residual artifacts (e.g., muscular, environmental). 

Both the EEGs were finally segmented into1𝑠 lasting trials 

for further causal connectivity estimation. 

The graph filter introduced in Section D was then used to 

extract the low- and high-pass graph filtered version of both 

the EEG-like and real brain signals. Specifically, each trial 

was considered as a sequence of graph signals 𝑋 ∈ 𝑅𝑁×𝑇 , 

where 𝑁 is the number of nodes in the underlying network 

(i.e. the number of electrodes on the scalp) and 𝑇 the number 

of samples in each trial. Then, the low- and high-pass filtered 

version of each graph signal were extracted as in Eq.6. 

Functional connectivity matrices were then extracted 

from the filtered versions of both the EEG-like and real brain 
signals by means of Partial Directed Coherence (PDC), a 

spectral estimator relying on the multivariate autoregressive 

(MVAR) model of the EEG time series [11]. PDC values 

were averaged within four frequency bands, namely theta 

([3, 7] 𝐻𝑧) , alpha ([8, 12] 𝐻𝑧) , beta ([13, 30] 𝐻𝑧) and 

gamma ([31, 40]𝐻𝑧)  band, and tested against the chance 

level by applying the asymptotic method in [12]. For real 

EEG data, a non-parametric test was used to extract relevant 

task-versus-rest patterns. Specifically, the 95th percentile was 

extracted from the weights’ distribution of each rest matrix 
and used to contrast the corresponding task matrix. 

 

III. RESULTS 

A. Cutoff frequency for the graph filter 

As shown in Fig.2, experimental findings pointed out that 

half of the energy contained in the mannequin’s GFT 

spectrum is expressed by the first 𝑛̅ = 3 coefficients. This 

means that it is possible to write a truncated Fourier series 

that preserves half of the energy of the original signal using 

the 𝑛̅ = 3 slowest harmonics. Since the residual 50% of the 

energy is expressed by the remaining 𝑁 − 𝑛̅ = 28  GFT 

coefficients, it is possible to conclude that the power spectral 

density (i.e. the amount of energy per network harmonics) is 

higher in the left part of the spectrum than in the right-one. 

 
Fig.2 Energy spectrum (upper panel) and cumulative energy (lower 

panel) of the GFT coefficients extracted from mannequin’s EEG data 

 
Fig.1. Positioning of the electrode cap on the mannequin. A wet towel was 
placed between the head of the mannequin and the EEG cap to mimic the 
conductivity of the human skin. 

1072



 

B. Connectivity estimate on mannequin EEG 

Results from functional connectivity estimate are shown 

in Fig.3 where PDC scalp maps are arranged row-wise 

according to the type of graph-filter applied on the EEG-like 

time series. Specifically: panels a), b), c) and d) show PDC 

scalp maps obtained without the application of any graph 
filtering procedure, panels e), f), g) and h) refer to scalp maps 

obtained applying a low-pass graph filter and panels i), j), k) 

and l) refer to the high-pass graph filtered version of the data. 

Different columns correspond to different frequency bands: 

the first column refers to theta, the second one to alpha, the 

third one to beta and the last one to gamma band respectively. 

As for PDC maps extracted from the unfiltered EEG-like 

time series, it is possible to appreciate the presence of 

spurious connectivity flows characterizing the whole scalp in 

all the investigated frequency bands. Furthermore, the 

extracted connectivity patterns are not full since some of the 

links are associated with weights smaller than the 
corresponding statistical threshold. Conversely, connectivity 

maps extracted from the low-pass version of the EEG-like 

signals describe a full connectivity pattern involving all the 

electrodes on the scalp. The estimated PDC values have, in 

general, small amplitudes but are always larger than the 

corresponding statistical threshold. Finally, connectivity 

maps extracted from the high-pass EEG-like signal are 

empty, meaning that the estimated PDC values lie below their 

statistical threshold. 

C. Connectivity estimate on real EEG data 

Functional connectivity maps extracted from the analysis 

of real EEG data are shown in Fig.4. Specifically, each row 

shows the PDC maps extracted after the application of a 

different graph filter on the original EEG data, while 

frequency bands are arranged column-wise. 

By focusing on the effects of a low-pass graph filtering 

procedure (first and third rows of Fig.4), it is possible to 
appreciate the presence of an unclear connectivity pattern 

characterizing the whole scalp in most of the investigated 

frequency bands. Regardless of the executed motor task, in 

fact, the extracted connectivity patterns do not exhibit a clear 

topological localization on the scalp. On the other hand, PDC 

patterns extracted after the application of a high-pass graph 
filter (second and fourth rows of Fig.4) exhibit a pronounced 

contralateralization in most of the investigated frequency 

bands. More in detail, it is possible to appreciate that most of 

the links point toward the left hemisphere during right-hand 

extension tasks, while direction is reversed during left-hand 

tasks. 

 

IV. DISCUSSION 

When compared to the real EEG scenario, the effects of a 
graph filtering procedure on the EEG-like signals clearly 
describe the presence of a different underlying activity. 
Specifically, PDC maps extracted using the low-pass version 
of the EEG-like time series describe a dense pattern that 
spreads all over the scalp, regardless for the frequency band 
taken into account. Such a dense pattern is supposed to reflect 
the contribution of electrodes crosstalk since, in absence of a 
true brain activity, this is the only contribution that affects 
mannequin’s EEG. In line with this, it is worth to note that all 
the PDC values obtained using the high-pass version of the 
signal are below their statistical threshold, properly reflecting 
the absence of a true causal relationship among the recorded 
set of signals. It could also be appreciated that, in line with 
scientific literature, the spurious connectivity flows 
characterizing the unfiltered version of the EEG-like time 
series confirms that PDC is highly sensitive to the positioning 
of the electrodes on the scalp [7], [13]. 

On the other hand, PDC maps extracted from real EEG 
data suffer less from the contribution of short-range links, 
suggesting that the effects of crosstalk are here less expressed 
because of the presence of a stronger underlying causal 
activity. In contrast to the mannequin scenario, it is interesting 
to appreciate that PDC maps extracted using the low-pass 
filtered version of the real EEG time series describe different 
causal patterns depending on the investigated frequency band. 
Such a behaviour may be related to the mixed contribution of 
electrodes’ crosstalk and volume conduction, since the latter 
one is known to affect real EEG data only because of the 
presence of an inner source within the scalp. Furthermore, the 
application of a properly designed graph filter on real EEG 
data allowed for the extraction of causal connectivity patterns 
in line with the physiological principles describing the 
changes in brain activity during the execution of simple hand 

 
Fig.3 Functional connectivity maps extracted from mannequin’s EEG-like signals without graph filtering (upper row), before the application of a low-pass 

graph filter (middle row) and before the application of a high-pass graph filter (last row). 
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movements. [14]. In fact, PDC maps extracted after the 
application of a high-pass graph filter exhibit well-defined 
topological properties, reflecting a pronounced 
contralateralization which is known to characterize the 
execution of simple hand movements. 
 

V. CONCLUSION 

This work explored the issue to characterize the 

contribution of different network harmonics in brain 

connectivity estimate. Concerning the analysis of EEG-like 

time series, experimental findings allowed to point out the 

contribution of a properly designed graph filter as a tool for 

mitigating the effects of crosstalk when dealing with 

connectivity estimate. Similarly, the application of the 

proposed filtering techniques to real EEG data allowed to 
mitigate the effects of crosstalk, promoting the extraction of 

connectivity patterns in line with the physiological principles 

governing the execution of simple hand movements in 

healthy subjects. 

Future works should compare the proposed approach with 

currently used spatial filtering techniques for the EEG signal, 

such as the well-known surface Laplacian. Furthermore, it 

would also be interesting to characterize how the choice of 

hyperparameters (such as the number of the links used to 

extract the adjacency matrix) affects the filtering effect for 

the proposed approach. 
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