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Abstract—Graphs have become a predominant way of rep-
resenting structured information. Pioneering frameworks such
as graph signal processing (GSP) have been developed for the
analysis of data within such representations (e.g. brain graphs).
Notably, by integrating community structures, community-aware
GSP emphasizes on the importance of capturing the intrinsic
organization of the graph, by bringing forth the notion of
modularity in the signal analysis. Here, we leverage recent work
on community detection for directed graphs and propose a
community-driven signal processing approach. Graphs signals
are projected through regression onto a dictionary defined by the
directed communities, termed bicommunities, to later obtain a
decomposition of the original signal. We then apply the proposed
framework to brain graphs and signals obtained with magnetic
resonance imaging. Our findings provide relevant insights into
known functional brain networks and open new avenues for the
study of their interaction.

Index Terms—Community structure, modularity, directed
graphs, graph signal processing, MRI, brain connectivity

I. INTRODUCTION

Recent years have seen the growth of diverse methods
and applications to analyze signals on irregular domains such
as graphs. One important example of these efforts is the
field of graph signal processing (GSP) [1], [2] that defines
operations such as the Graph Fourier Transform (GFT), which
then provide the basis for spectral analysis and filtering of
graph signals. In literature, the GFT is mostly defined by
the eigenvectors of a graph shift operator (GSO), such as the
Laplacian or the adjacency matrix [1], [2], [3], [4]. However,
another stance can be taken, by considering the modularity
matrix as GSO, and therefore integrating the concept of
community structure into the operations. Previous work on
community-aware GSP [5] has extended the initial GFT with
operations such as filtering, sampling, denoising as well as
an application to brain graphs. In addition, there is a growing
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interest in GSP for directed graphs with several recent works
dealing with directed edge information [6], [7], [8].

In this work, we bring the aspects of both community-
aware GSP and digraph GSP to propose community-aware
signal processing for directed graphs. Specfically, we leverage
a newly proposed framework for community detection in
directed graphs, entitled bimodularity [9], whose foundation
lies in separating a community in a sending and its correspond-
ing receiving parts (i.e., a bicommunity). We then propose
a scheme to decompose a graph signal in terms of those
bicommunities. We demonstrate the feasibility of this approach
for synthetic data with ground truth, as well as for the directed
human connectome. The highlighted communication pathways
are put in relationship with brain function by estimating signals
that would propagate through the bicommunities to fit known
brain functional networks [10]. We finally show that it is possi-
ble to split the graph signal according to the sending/receiving
properties of the constituting bicommunities.

II. BICOMMUNITY-INFORMED SIGNAL PROCESSING

A. Detection of bicommunities

Let us consider a directed graph G of cardinality N repre-
sented by the asymmetric adjacency matrix A. From A we
then consider the bimodularity index that is an extension of
the well known modularity metric [11], but accounting for
graph edges from a sending to its corresponding receiving
community [9]:

Qbi =
1

m

K∑
k=1

∑
i∈Cout

k

j∈C in
k

[Aij −E(Aij |H0)] , (1)

where m is the total number of edges, K is the number of
bicommunities and E(Aij |H0) expresses the expected propor-
tion of edges under a null hypothesis. The null hypothesis H0

expresses homogeneous distribution of edge weights over the
nodes; i.e., kout

i kin
j /(2m) where kout

i is the out-degree of node
i and kout

j is the in-degree of node j [12]. For the case of
two bicommunities, Eq. (1) can be rewritten using separator
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Fig. 1. Canonical example on the block cycle graph. A) Diagram of the directed edges between 4 sets of nodes Sk, k ∈ 1, . . . , 4. B) Edge clusters of block
cycle graph (see caption) with a graph signal x located in the upper blocks (S1, S2). C) Bimodularity index of each bicommunity (in descending order –
top) and projected coefficients w of the graph signal in B (bottom). D) Reconstructed senders xsend of the graph signal (left) for 1 to 3 repeated steps. Each
step takes as input the signal directly on the left (xsend

2 = CoutCin†xsend
1 , sender 2 is the reconstructed sender of sender 1).

vectors sout and sin, whose elements take values +1/ − 1 to
indicate the partitioning

Qbi(s
out, sin) =

1

m

∑
(i,j) s.t.

sout[i]=sin[j]

Bij =
1

2m
(sout)TBsin, (2)

with Bij = Aij−kout
i kin

j /m being the directed modularity ma-
trix. Optimization of bimodularity is achieved through convex
relaxation that allows sout and sin to take real values instead
of strictly +1/ − 1 and imposes unitary norms. From (2),
the bipartition problem is solved through a spectral approach
that maximizes the bimodularity by considering the singular
value decomposition (SVD) of the matrix B = UΣVT .
The left U and right V singular vectors can therefore be
interpreted as describing the space of sending and receiving
communities, respectively, and the diagonal elements of Σ are
the singular values µ that relate to the bimodularity index, such
that Qbi(un,vn) =

µn

2m .
Beyond the bimodularity embeddings given by U and V,

the detection of bicommunities is achieved through clustering
at the edge level. In particular, a feature space for the graph
edges is created by aggregating the sending projection un[i]
of the source node i and the receiving projection vn[j] of the
target node j, both weighted by µn, n-th entry of the diagonal
matrix Σ. Formally, to the edge (i, j) is associated the feature
vector:

f =
(
µ1u1[i], µ1v1[j], . . . , µNuN [i], µNvN [j]

)
,

The nodal representation of each cluster of edges that will
represent a bicommunity, is recovered as the proportion of
(out or in) edges which belong to a specific cluster. The sets of
sending and receiving nodes for a bicommunity are represented
as coutk and cink , respectively.

A consequence of edge clustering is that a node can belong
to different bicommunities, similar to link communities for
the undirected case [13]. Those sending and receiving sets of
nodes can either overlap, thus leading to conventional graph
communities of densely connected nodes (assortative), or they
can describe directed connections between disjoint sets of
nodes in a bipartite-like structure (dissortative) [14].

B. Signal processing on bicommunities

We now propose to consider the graph signal x ∈ RN

and represent it in terms of the graph’s sending and receiving
communities. Formally, we build the two following matrices

Cin =
(
cin
1 , ... , cin

K

)
, Cout =

(
cout
1 , ... , cout

K

)
and regress the weights win,wout so that

win = argmin
w∈RK

||x−Cinw||2, wout = argmin
w∈RK

||x−Coutw||2.

To do so, let Cin†,Cout† be the pseudo-inverse of the above-
mentioned matrices, then the weights for optimal signal rep-
resentations are given by:

win = Cin†x, wout = Cout†x.
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Fig. 2. Brain bicommunities and signal sender reconstruction. A) 12 brain communities c1 − c12 are shown in different colors (see caption), including block
diagonals representing assortative communities, off-diagonal blocks in upper left and lower right squares showing within-hemisphere communities, and upper
right and lower left squares showing between-hemisphere communities. B) Brain views of the communities. L: left; R: right; A: anterior; P: posterior. C)
Bimodularity index of communities, shown in decreasing order. D) Pearson correlation between the reconstructed sender xsend of each resting-state network
and the network themselves (values are shown for |ρ| ≥ 0.3). A high positive value in row i and column j denotes that the nodal representation of network j
could originate from network i. Brain networks abbreviations are Cont: Control; SalVentAttn: Salience Ventral Attention; DorsAttn: Dorsal Attention; SomMot:
Somatosensory Motor; Vis: Visual.

Therefore, x̃in = Cinwin and x̃out = Coutwout represent the
fitted signals in terms of a linear combination of the receiving
and sending communities, respectively.

One avenue to aggregate sending and receiving information
is to leverage the correspondence between a receiving commu-
nity and its sending pattern. While win captures the optimal
weights to reconstruct x using the receiving communities
Cin, these weights can also be used for reconstruction with
the sending communities Cout. Intuitively, xsend = Coutwin

computes the signal that would lead to x through the bicom-
munities: the reconstructed sender. Similarly, the propagation
of the signal through the bicommunities, or the reconstructed
receiver, can be estimated as xreceive = Cinwout.

III. RESULTS

A. Synthetic data

As a first proof of concept, we consider the directed block
cycle graph with four sets of nodes that have connections
within themselves and between them according to the direc-
tional pattern indicated in Fig. 1.A. Eight bicommunities are
retrieved, Fig. 1.B, and can be distinguished as assortative or
dissortative based on their bimodularity index in Fig. 1.C.

A synthetic binary graph signal is considered, with non-zero
values in the two upper blocks (1.B). We first observe that the
weights associated to each communities in 1.C are higher for
assortative (purple and blue) than dissortative communities.
This is consistent with the fact that this block cycle graph is
more densely connected within blocks than between blocks.

We then compute the reconstructed sender xsend =
CoutCin†x for a synthetic graph signal in two consecutive
blocks (Fig. 1.D). The first reconstructed sender signal (sender
1) is concentrated in the upper right block with less energy

in the other upper block (S2) and even less in the lower right
block (S3). Further reconstruction of the senders (considering
the previous sender as graph signal) shows a smooth transition
from signal concentration in the upper blocks (original signal)
to signal concentration in the blocks on the right (sender 3).
Because the columns of C and rows of C† do not form a
complete basis, the signal reconstruction is not perfect, and
this is translated in a decrease in the signal norm and contrast.

B. Human brain

A directed human connectome is built by aggregat-
ing a population-level white-matter bundle atlas [15] and
cortico-cortical evoked potentials (CCEP) from stereo-
encephalographic responses to direct electrical stimulation of
the multi-centric F-TRACT database [16]. Specifically, the
probability to have a bundle is used to compute the strength
of connections sij between two brain regions i and j. The
directionality of connections is estimated from the directed
communication fij which represents the probability to record
an early CCEP (< 100ms) in area j when stimulating area i.
The directed connectivity dij is then derived by redistribut-
ing the connectivity strength to the outgoing or incoming
connection based on the proportion of outgoing or incoming
communication probability:

dij = 2sij
fij

fij + fji
.

We first extract K = 12 bicommunities (based on silhouette
analysis) from this directed brain connectome (Fig. 2.A).
These cluster of edges (Fig. 2.B) capture, in descending order
of bimodularity index (Fig. 2.C): assortative communities
within the anterior or posterior half of each hemisphere (c1
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to c4); anteroposterior communication within each hemisphere
(c5 to c8); and inter-hemispheric connections (c9 to c12).

Similar to the canonical block cycle example, we compute
the reconstructed sender of known functional brain networks
[10]. Nodal signals reflect the probability that a given node
belongs to a particular brain network. Fig. 2.D shows the
Pearson correlation of each pair of reconstructed sender (row)
and original network (column). As such, we observe high
correlation between the nodal representation of higher-level
networks (control, default, salience) and their reconstructed
senders. On the other hand, the visual network appears to
originate from itself or from the somatosensory motor network.
The senders reconstructed with K = 12 do not overlap
with the dorsal attention, limbic and somatosensory motor
networks.

IV. DISCUSSIONS & OUTLOOK

We took advantage of the recently introduced notion of bi-
communities, which are communities endowed with direction-
ality. We introduce the idea of bicommunity-driven coefficients
of a graph signal and discuss how these coefficients can be
used to reconstruct a signal that has been propagated through
the bicommunities.

This is unique to directed graphs and, especially, to the
correspondence between the sending and receiving parts of a
bicommunity, introduced in [9]. Relevant investigation could
incorporate sender/receiver reconstruction with a selected sub-
set of bicommunities or after operating on the projected
coefficients w. Extra attention is needed because perfect
reconstruction is, in general, not feasible since the columns
of C do not form a basis. Partial reconstruction using a subset
of bicommunities nevertheless remains a compelling avenue.

The bicommunities of the directed human connectome cap-
ture the hemispheric and anteroposterior axes of brain commu-
nication. High-level networks of the brain tend to emerge from
one another, aligning with the notion that they are broadly
distributed and that higher-level functions are dynamically
reorganizing. On the other hand, primary sensory networks,
such as visual and somatomotor, appear more segregated.
This aligns well with literature that identified a macroscale
gradient opposing low-level sensory to high-level cognition
networks based on different perspectives (e.g., temporal hi-
erarchy, coupling between structure and function) [17], [18],
[19]. Consistent with our results, work on global workspace
applied to the brain also identified high-level regions (default
mode and attention area) as part of a rich club orchestrating
information throughout the brain [18]. These are specific to the
identified bicommunities, but lower level processes (sensory)
could however be observed with more bicommunities.

Our work adds to the existent studies bringing a new
perspective on directed graph signal processing, that holds
significant relevance for applications such as in network neu-
roscience.

CODE AND DATA

All code and data used in this article are openly available
at https://github.com/MIPLabCH/Bimodularity.
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