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Abstract—Traditional graph signal processing (GSP) methods
applied to brain networks focus on signals defined on the nodes.
Thus, they are unable to capture potentially important dynamics
occurring on the edges. In this work, we adopt an edge-centric
GSP approach to analyze edge signals constructed from 100 un-
related subjects of the Human Connectome Project. Specifically,
we describe structural connectivity through the lens of the 1-
dimensional Hodge Laplacian, processing signals defined on edges
to capture co-fluctuation information between brain regions. We
demonstrate that edge-based approaches achieve superior task
decoding accuracy in static and dynamic scenarios compared to
conventional node-based techniques, thereby unveiling unique as-
pects of brain functional organization. These findings underscore
the promise of edge-focused GSP strategies for deepening our
understanding of brain connectivity and functional dynamics.

Index Terms—GSP, higher-order interactions, Hodge Lapla-
cian, brain signals, fMRI.

I. INTRODUCTION

Graph Signal Processing (GSP) has emerged as a power-
ful framework that extends classical signal processing tech-
niques to data defined on nonhomogeneous domains, such
as graphs [1]. In many scientific domains, GSP provides a
structured approach to analyze signals in the context of an
underlying network architecture that is thought to support
and generate the dynamics. More specifically, in neuroscience,
diffusion-weighted imaging is typically used to construct struc-
tural connectomes − the networks of white-matter pathways
that connect distinct brain regions [2], [3]. Functional imaging
techniques in turn capture dynamic signals that serve as direct
or indirect proxies for neural activity [4]. Among these, fMRI
leverages the Blood Oxygenation Level-Dependent (BOLD)
signal to track hemodynamic fluctuations that reflect underly-
ing brain activity patterns [5], [6].

Within the traditional GSP framework, each brain region
is usually represented by a node in the graph given by the
structural connectome, while the corresponding fMRI time
series are treated as the signals defined on such nodes. By
employing operators derived from the graph structure —
typically the graph Laplacian [7] — one can perform a graph
Fourier transform (GFT) to decompose these signals into their
structural spectral patterns [8]. This decomposition not only

respects the brain’s anatomical backbone, but it also enables
operations like graph filtering and randomization [9].

Although GSP has proven effective for analyzing node-
level signals, many neural processes hinge on interactions
among nodes — defined at the edge and higher-order levels.
Indeed, brain function emerges not only from the activity
of isolated regions but also from the coordinated dynamics
of pairwise connections and complex multi-way interactions
among larger groups of regions. This insight has sparked a
growing interest in higher-order descriptions [10]–[12], which
capture the intricate relationships invisible to conventional
node-centric graph models.

To model these complex interactions, recent advances have
extended signal analysis from nodes to higher-dimensional
structures, typically using simplicial complexes [12]. In a
simplicial complex, signals are not only defined on nodes
(0-simplices), but can also be on edges (1-simplices), tri-
angles (2-simplices), and higher-dimensional analogs. This
enriched representation models complex relationships, such
as the synchrony between pairs of regions, or the collective
dynamics among groups [13]. Topological Signal Processing
(TSP) naturally extends the principles of GSP to data defined
on higher-order structures [14]–[16]. For example, in brain
network analysis, while node signals represent regional activa-
tion, signals on edges may capture co-activation or synchrony
between pairs of regions, and signals defined on triangles
can reveal interactions among three regions, thereby provid-
ing deeper insights into the coordinated activity underlying
cognitive processes [17], [18].

Here, we introduce a novel TSP framework and apply it
to the fMRI data of 100 unrelated subjects from the Human
Connectome Project [19]. We outline methods to construct,
filter, and project signals onto the eigenvectors of the Hodge
Laplacian [20]–[22] — a generalization of the graph Laplacian
to simplicial complexes of any order. Using these techniques,
we systematically analyze the temporal dynamics of higher-
order interactions in neural circuits, with a focus on task
decoding [23]. We find that edge-level descriptions provide
better discrimination between tasks. Overall, by extending
traditional graph signal processing to higher-order systems,
our framework offers new insights into how complex neural
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connectivity patterns underpin brain function.

II. BACKGROUND

In classical GSP, one considers a graph G = (V,E)
with N vertices. Let A ∈ Rn×n be the adjacency matrix
and D ∈ Rn×n be the diagonal degree matrix defined by
Dii =

∑
j Aij . The graph Laplacian is given by L = D −A.

Alternatively, if we define the (oriented) node-edge incidence
matrix B ∈ Rn×m (with m edges), then the graph Laplacian
can be expressed as

L = BBT , (1)

which admits an eigendecomposition of the form:

L = UΛUT , (2)

where the columns of U are the eigenvectors and Λ is the
diagonal matrix of the nonnegative eigenvalues. The graph
Fourier transform (GFT) of a signal x ∈ Rn (defined on the
nodes) is then given by

x̂ = UTx, (3)

with the inverse transform x = Ux̂. This framework allows us
to perform operations such as filtering, denoising, and spectral
analysis on signals that reside on the vertices of the graph [9],
[24].

A. Simplicial Complexes and the Hodge Laplacian

Many complex systems exhibit interactions that extend
beyond simple pairwise connections and therefore cannot be
easily described as graphs. In these cases, it can be convenient
to shift our focus away from nodes and consider signals
defined on edges or on general groups of nodes.

TSP generalizes the classical GSP framework to deal with
these higher-order signals by leveraging the topological the-
ory of simplicial complexes: combinatorial objects built with
nodes, edges, triangles, and their higher-dimensional analogs.

Formally, given a set of nodes V , a k-simplex σ is a set
of k + 1 nodes in V , and a simplicial complex K is a set
of simplices where any subset of a simplex σ ∈ K is still
a simplex in K. We can think of 0-simplices as nodes, 1-
simplices as edges, 2-simplices as triangles, and so on. Let
nk denote the number of k-simplices in K. A k-dimensional
signal, usually named cochain, is a function that associates a
real number to every k-simplex. We can therefore think of the
space of k-cochains as Rnk . In the rest of the paper, we will
mainly deal with edge signals, and thus we restrict the theory
to the case k = 1 (for a detailed formalism and generalization
see [25], [26]). The rationale for this choice is: (i) We obtain
significantly more information already for k = 1, and (ii) the
structural connectome is a natural candidate for the underlying
structure, which can be seen as a 1-dimensional simplicial
complex.

For each k ≥ 1, the oriented boundary operator Bk ∈
Rnk−1×nk connects the spaces of higher-order signals by
mapping a k-simplex to a formal linear combination of its
(k − 1)-faces Bk ∈ Rnk−1×nk . In our case, B1 is equal to

the node-edge incidence matrix B1 = B, and B2 describes
incidence relations between edges and triangles.

The combinatorial Hodge Laplacian of order 1 is defined
as the sum

L1 = L↓
1 + L↑

1 = BT
1 B1 +B2B

T
2 , (4)

where the first addendum describes interactions between edges
and nodes, while the second describes interactions between
edges and triangles.

As for the graph Laplacian, the edge-based Hodge Laplacian
allows an eigendecomposition of the form:

L1 = U1Λ1U
T
1 , (5)

where the columns of U1 are the eigenvectors of L1 and Λ1 is
the diagonal matrix of its eigenvalues. The topological Fourier
transform (TFT) of an edge-signal x1 ∈ Rn1 is then obtained
by mapping it to the basis of the eigenvectors [14]

x̂1 = UT
1 x1,

with the inverse transform given by x1 = U1x̂1.

B. Hodge Decomposition

A central result in TSP is the Hodge decomposition [16],
which states that any 1-signal x ∈ Rn1 can be uniquely
decomposed as the sum of three orthogonal components:

x = xgrad + xcurl + xharm,

where:
• Gradient (Exact) Component: xgrad lies in the range of

BT
1 and is expressed as

xgrad = BT
1 y, for some y ∈ Rn0 .

This component captures variations that are induced by
differences across adjacent nodes.

• Curl Component: xcurl lies in the range of B2 and is
given by

xcurl = B2z, for some z ∈ Rn2 .

It contains the component of the signal that circulates
around triangles.

• Harmonic Component: xharm is the residual component
that lies in the kernel of L1:

xharm = x− xgrad − xcurl.

In practice, xharm is a linear composition of the harmonic
eigenvectors of L1, i.e., the ones associated with zero
eigenvalues. The topological significance of the harmonic
space kerL1, stands in the fact that its dimension is
equal to the number of 1-dimensional holes (cycles) in
the simplicial complex [20]. The harmonic eigenvectors
that span it are also seen to be localized around the
cycles [27].

In summary, traditional GSP focuses on signals defined on
graph nodes using the graph Laplacian and its Fourier trans-
form. The TSP framework extends these ideas to higher-order
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Fig. 1. Eigenmodes of the edge-based Hodge Laplacian L↓
1 . The sparsest

(according to the ℓ1 norm) gradient (a) and harmonic (b) eigenvectors of the
edge-based Hodge Laplacian L↓

1 . (c) A non-sparse harmonic eigenvector. The
width and color of each edge represent the absolute value of its associated
component in the eigenvector.

domains. In particular, by leveraging simplicial complexes,
Hodge Laplacian, and Hodge decomposition, TSP allows for
the analysis of signals on edges, triangles, and beyond. As
we show in the next section, this generalized framework is
particularly powerful for exploring complex interactions in
brain function, in which multi-way relationships are critical
to understanding neural dynamics [28].

III. APPLICATION TO BRAIN SIGNALS

A. Methodology

We analyze the structural and functional MRI data from
resting state and seven different tasks of 100 unrelated healthy
subjects from the Human Connectome Project (HCP) [19],
[23], considering the Schaefer 100 [29] plus 19 subcortical
regions (see [18] for preprocessing details). For these brain sig-
nals, we extract structure-function signatures — both dynami-
cally and statically — using (i) classical GSP approaches [24],
and (ii) TSP approaches based on the edge-based Hodge
Laplacian L1 obtained from structural connectomes.

Let xi(t) denote the time series at node i. We start by
lifting the node time series to edge signals using two different
approaches:

i) The amplitude-based edge signal (also called co-
fluctuation time series [30]) between nodes i and j is obtained
as:

eij(t) = xi(t)xj(t). (6)

which quantifies the degree of co-activation between the
corresponding brain regions.

ii) Alternately, each node signal xi(t) is transformed via
the Hilbert transform, denoted by H [xi(t)], from which we
retrieve the instantaneous phase θi(t). The phases are then
combined to form edge signals in the following way:

eij(t) = f
(
θi(t)− θj(t)

)
, (7)

where we chose f as either the sine or cosine function to
encode the edge-based phase synchronization between brain
regions [31], [32].

We use the entire weighted structural connectome based
on the number of white-matter fibers for the GSP approach,
following recent methods by Preti et al. [33] to examine both
the coupled/decoupled signals and structural-decoupling index

(SDI) signatures. For the TSP analysis, we first threshold the
connectome to retain the top 20% connections to balance
sparsity and computational cost.

We compare two decomposition strategies: a first one in
which we decompose only L↓

1 into harmonic and gradient
components (Figure 1), and a second one that fully leverages
the TSP decomposition on L1 to obtain the harmonic, gradient,
and curl components. Notice that when constructing L1, we
consider the clique complex of the graph at order 2 — treating
each three-node clique as a 2-simplex — to account for higher-
order interactions.

To compare the GSP and TSP approaches on fMRI data,
we follow a methodology similar to [18]. That is, we first
concatenate the initial 300 volumes of resting-state fMRI with
data from seven task sessions — excluding rest blocks and
regressing out task paradigms — to generate a unified fMRI
recording. We then compute time–time correlation matrices
from the filtered signals produced by the approaches, where
each matrix entry (i, j) represents the Pearson correlation
between the temporal activations at time points ti and tj .

The correlation matrices, analogous to recurrence plots in
dynamical systems, are binarized by thresholding at the 95th
percentile (values below the threshold are set to zero, and

BOLD
ECS: 0.47±0.04

GSP Decoupled
ECS: 0.51±0.01

TSP L↓
1 sin harmonic

ECS: 0.94±0.02

Rest Emotion Gambling Language Motor Relational Social WM

BOLD
ECS: 0.47±0.04

GSP Decoupled
ECS: 0.51±0.01

TSP L↓
1 sin harmonic

ECS: 0.93±0.02

Rest Emotion Gambling Language Motor Relational Social WM

a b c

d

BOLD
ECS: 0.47±0.04

GSP Decoupled
ECS: 0.51±0.01

TSP L↓
1 sin harmonic

ECS: 0.94±0.02

Rest Emotion Gambling Language Motor Relational Social WM

Fig. 2. Dynamic task decoding using GSP and TSP approaches. Fil-
tered recurrence matrix (i.e. time-time correlations) for three representative
measures, namely (a) BOLD signal, (b) GSP decoupled (high-frequency
components) signals, and (c) TSP L↓

1 sin harmonic reconstructed signal. In
each case, the corresponding ECS metric (compared with the ground truth
partition) is indicated. (d) ECS bar plots for various GSP and TSP measures,
with mean and standard deviation computed over 10 bootstrap samples, each
using 80 out of the 100 subjects (considering LR and RL phase encoding, i.e.
160 subjects per sample). Notice that L↓

1 refers to the Laplacian constructed
only with interactions between edges and nodes, whereas L1 refers to the
Laplacian accounting also for triangles as 2-simplex. Harm, grad, and curl
correspond to different parts of the Hodge decomposition; prod, sin, and cos
are the functions used to estimate the edge signals.

1086



those above are set to one). We then apply the Louvain algo-
rithm [34] to extract community partitions, using consensus
clustering (with 100 iterations) to address the algorithm’s
stochastic nature [35]. The effectiveness of these partitions
in capturing the dynamical brain fluctuations task versus rest
timing is then assessed using the element-centric similarity
(ECS) measure [36], which ranges from 0 for completely
dissimilar partitions to 1 for perfectly corresponding ones.

B. Results

We report in Fig. 2a-c the results of our analysis, showing
the recurrence plots of three representative measures, namely,
the original BOLD signal, the coupled GSP-derived signal, and
the L↓

1 harmonic component for the edge signal of Equation
(7) with f = sin, each annotated with its ECS value. For
completeness, we also provide in Fig. 2d the ECS measures
for a range of other measures tested.

We now turn our attention to static task decoding, following
the approach described in [37]. In this analysis, we employ a
Support Vector Machine (SVM) to classify task-related states
(rest plus seven tasks) based solely on node-wise measures of
functional connectivity and structure-function coupling derived
from GSP and TSP methods. That is, for each method, we con-
struct nodal feature matrices of size NROI ×NBS NE NS =
119×1600, where NBS represents the number of brain states
(rest and tasks), NE is the number of encoding conditions
(2), and NS is the number of subjects. As before, resting
periods are excluded from the task, and task paradigms are
regressed out from the fMRI time courses to minimize con-
founds from paradigm-imposed timings, aiming at keeping
only differences due to the specific task-related states. For
the GSP approach, we extract coupled, decoupled, and SDI
nodal values (see [33]), fixing a value c = 30 of spectral
components to be common to all acquisitions and avoid task-
biases that could affect the following classification. In contrast,
for the TSP analysis, we first compute the ℓ2 norm over time

of the filtered edge-level signal x′
1 =

√∑T
t=1 x1(t)2, and

then project this measure onto the nodes using the boundary
operator B1. Formally, the nodal signal is defined as:

s = |B1|x′
1, (8)

where the |B1| is the element-wise absolute value of the
boundary operator, to ignore the edge orientations.

Figure 3 reports the accuracy of 100-fold leave-one-subject-
out cross-validation and one-versus-one multiclass linear SVM
for different GSP and TSP reconstructions. Interestingly, also
in this case, we find that TSP-based measures outperform
classical GSP approaches, remarking the importance of the
dynamics of the connections (and thus of the Hodge decom-
position), rather than that of the single nodal activations.

IV. DISCUSSION

Understanding the intricate relationship between brain ac-
tivity and its underlying anatomical connectivity has long
posed significant challenges in neuroscience. Traditional ap-
proaches often employ large-scale neural population models

SDI
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Fig. 3. Task decoding accuracy across methods. This figure presents
the task decoding accuracies for node-wise functional connectivity and
structure-function coupling measures derived from both GSP and TSP ap-
proaches. Accuracies were computed using 100-fold leave-one-subject-out
cross-validation with one-versus-one multiclass linear SVM classifiers. The
top three performing methods are highlighted in bold. Also in this case, L↓

1
refers to the Laplacian constructed only with interactions between edges and
nodes, whereas L1 refers to the Laplacian also accounting for triangles as
2-simplex. Harm, grad, and curl correspond to different parts of the Hodge
decomposition; prod, sin, and cos are the functions used to estimate the edge
signals.

that integrate structural connectivity to assess features ob-
served in FC, such as modular organization and spatiotemporal
dynamics [38]. Graph signal processing offers a powerful
approach, by treating the structural connectome as a graph, to
decompose node-based signals (e.g., fMRI data) into various
frequency components via the graph Fourier transform. While
these methodologies have provided valuable insights into the
distribution of neural activity across networks, their primary
focus on node-level signals limits their capacity to capture
more complex interactions.

In this work, we shifted our focus to an edge-centric per-
spective through Topological Signal Processing [16], an exten-
sion of GSP that considers signals also defined on higher-order
simplices, such as edges and triangles, within the network.
By introducing a novel way to define temporal signals at the
level of edges, we provide the first evidence that TSP methods
outperform traditional GSP approaches in decoding cognitive
tasks. Specifically, leveraging the decomposition of the Hodge
Laplacian, we break down edge-level signals into gradient,
curl, and harmonic components. Notably, our analysis reveals
that filtering out the gradient component — which reflects dif-
ferences directly derived from node-level activity — unmasks
higher-order interactions encoded in the curl and harmonic
subspaces. These refined edge-centric features significantly
enhance task decoding performance, as confirmed by both
dynamic analyses (using time–time correlation matrices) and
static classification with Support Vector Machines.

Furthermore, we can map filtered edge signals back to
the node level by using simple mathematical operations —
e.g. lifts and projections with boundary operators [39] — we
can map filtered edge signals back to the node level. This
process uncovers nuanced aspects of brain connectivity that
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are overlooked when focusing solely on node-based analyses.
Overall, our study underscores the potential of TSP-based
approaches to capture and filter higher-order edge signals,
thereby offering a more comprehensive understanding of inter-
regional and intra-regional coupling variations over time or un-
der different experimental conditions. This innovative method-
ology not only enhances task decoding capabilities but also
holds promise for providing fresh insights into connectivity
alterations associated with neurological diseases.
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J. Miguel Soares, G. Deco, N. Sousa, and M. L. Kringelbach, “Cognitive
performance in healthy older adults relates to spontaneous switching
between states of functional connectivity during rest,” Scientific Reports,
vol. 7, no. 1, p. 5135, Jul. 2017.

[33] M. G. Preti and D. Van De Ville, “Decoupling of brain function from
structure reveals regional behavioral specialization in humans,” Nature
Communications, vol. 10, no. 1, p. 4747, Oct. 2019.

[34] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[35] A. Lancichinetti and S. Fortunato, “Consensus clustering in complex
networks,” Scientific reports, vol. 2, no. 1, p. 336, 2012.

[36] A. J. Gates, I. B. Wood, W. P. Hetrick, and Y. Y. Ahn, “Element-centric
clustering comparison unifies overlaps and hierarchy,” Scientific Reports,
vol. 9, no. 1, pp. 1–13, 2019.
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