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Abstract—Consider each node of a graph to be generating a
data stream that is synchronized and observed at near real-time.
At a change-point 7, a change occurs for a subset of nodes C,
which affects the probability distribution of their associated node
streams. In this paper, we propose the Online Centralized Kernel-
and Graph-based (OCKG) detection method to both detect ~ and
localize C, based on the direct estimation of the likelihood-ratio
between the post-change and the pre-change distributions of the
node streams. Our main working hypothesis is the smoothness of
the likelihood-ratio estimates over the graph, i.e. connected nodes
are expected to have similar likelihood-ratios. The proposed
method is evaluated in synthetic experiments.

Index Terms—Online change-point detection, non-parametric
statistics, likelihood-ratio estimation, graph-signal processing.

I. INTRODUCTION

Online, or sequential, change-point detection methods as-
sume that a stream of data is observed in near real-time, and
aim to detect the moment of a change 7 as soon as possi-
ble, while minimizing the false alarm rate [1]-[3]. Modern
challenges include handling larger amounts of complex data
streams, e.g. data lying over a graph, or even graph streams.
Many real-world systems can be seen as a network in which
each node generates a stream of data: e.g. a network of seismic
stations monitoring different geological events, the content
shared by users of a social network, or a network of financial
institutions, etc. A change-point may signify an earthquake,
a shift of users’ interest, or an early sign of an economic
crisis. In these examples, the graph structure provides a priori
relevant information about how the streams relate with each
other, and perhaps shape their behavior after a change occures.

In this paper, we address a naturally arising question: how
can we exploit the graph information in the online change-
point detection task? As a response, we present the On-
line Centralized Kernel- and Graph-based (OCKG) detection
method that is build over the collaborative likelihood-ratio
estimation framework introduced in [4], under the intuitive
assumption that the likelihood-ratios of any two connected
nodes are expected to have a similar behavior. More precisely,
we rely on the collaborative likelihood-ratio estimation frame-
work introduced in [4]. OCKG has the notable advantages
that it is: 1) it is non-parametric and hence requiring minimum
hypotheses about the nature of the data generating process at
each graph node, ii) more sensitive, thanks to the integration
of the graph structure, compared to methods that aggregate
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all data streams in a single stream, and iii) more accurate in
localizing the affected nodes compared with similar methods
(e.g. [5]). A longer version of this work can be found in [6].

II. BACKGROUND AND PROBLEM STATEMENT

General notations. Let a; be the i-th entry of a vector a;
when the vector is itself indexed by an index j, then we refer
to its i-th entry by a; ;. A;; is the entry at the i-th row and
j-th column of a matrix A. enyax(A) denotes the maximum
eigenvalue of A. 1), represents the vector with M ones (resp.
05s), and I/ is the M x M identity matrix. We denote by G =
(V,E,W) a positive weighted and undirected graph, where V'
is the set of vertices, E the set of edges, and W € RV*V
its weighted adjacency matrix. The graph has no self-loops,
i.e. Wy, =0,YVu € V. The degree of v is d, = ZuEng(l)) W,
where u € ng(v) indicates that u is a neighbor of v. With these
elements, we can define the combinatorial Laplacian operator
associated with G as £ =diag((d,),cv)— W, where diag(-)
is a diagonal matrix with the elements of the input vector in
its diagonal.

Problem statement. Suppose that we observe N synchronous
data streams, each associated to a node of a known connected
graph G. Let z,; be the observation at node v at time
t. We suppose a common input space for all nodes, i.e.
o €X, YveEV, te {1,...}. Furthermore, the observations
are independent in time, which is a standard hypothesis in
kernel-based change-point detection literature [7]-[10].

Consider as change-point the timestamp 7 at which the
distribution associated with the streams of the nodes belonging
to a set C' changes:

{ E<T Tyropo; 0

t>T1 Ty,t ~ qu;

where p, # q, if v € C, otherwise p, = q,,. We consider all p,,
Gv, C, T to be unknown. Moreover, we expect C' to depend on
the graph structure. A simple example with signals X C R? at
each node, is shown in Fig. 1. For each node v, let the sample
of n consecutive observations, indexed by ¢, be the set:

XU,t = {x’u,t—vu Ty t—(n—1) -+ x’u,t—l}- )

Our approach compares the two subsequent samples (datasets),
Xy and X, ;4,, for each node to decide whether they
follow the same distribution. The dissimilarity between the two
samples is quantified via an approximation of the Pearson’s
divergence (PE-divergence) [11].
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Fig. 1: Example of different two-dimensional data streams observed
over the nodes of a weighted graph. A change occurs in a subset of
nodes, and the change-point is the moment when the color changes
in the time-series. The 3 nodes on the left have a change associated
with a shift in the covariance matrix, while the 4 nodes on the right
experience a change related to a shift in the mean of their streams.

III. PROBLEM FORMULATION AND SOLUTION

The proposed Online Centralized Kernel- and Graph-based
(OCKG) change-point detection method capitalizes over the
connection between the approximation of the Pearson’s PE-
divergence and the likelihood-ratio estimation, which allows
the comparison of the samples X, ; and &), +4,. Since by
definition the PE-divergence is a non-symmetric similarity
measure, i.e. generally PE(p,q) # PE(q,p), we choose to ap-
proximate both those quantities. The OCKG method comprises
three main tasks, to which the next subsections are devoted:

A. Estimation: When a new observation arrives at time
t, we estimate the vector of relative likelihood-ratios
r%(-) = (r% 4(-),.,7%n+(-)), between the samples of
observations &}, X}, and for the reverse sample order
Fat(~) with samples X1, X}

B. Detection: The estimated likelihood-ratios r&;(-) and
f_at(-) are used to approximate the respective PE-
divergences, F;ES(Xt,XHn) and PAE;X(XHn,Xt). Then,
we define node scores, {S,},cv based on the latter
approximations. Finally, the node scores are aggregated
into a global score indicating whether a change has
occurred in the system.

C. Identification: Once a change-point is spotted, we use the
node scores {5, },cy to identify the nodes at which the
change occurred, hence identifying the set C.

A. Estimation

Our graph-related objective is to estimate jointly the N
node-level a-relative likelihood-ratio functions r&(z), ve'V,
given a user parameter « € (0,1), each one being associated
with the node v’s pdfs p, and ¢, and defined as:

() = () =
v( ) (1_@)pv(£)+@%}(x) =

)

where p& (x) = (1—a)p, (x) +agy,(x). The relative likelihood-
ratio 7y has two main advantages compared to the usual ratio
ry(z) = g:g;; i) it is well-defined even if p, is not absolutely
continuous with respect to ¢, and ii) it is a bounded function,
which is a property that facilitates its numerical estimation.

The PE-divergence between pS and ¢, is given in terms of
the relative likelihood-ratio as follows:

1
PE(pyllav) = 5Epg ) [(r () = 1)°]
1—
=B @) - SR, @] @)
BV |
— SEq @5 @) -3,

where the expectations are taken w.r.t. the probability measure
appearing as subindex. The joint estimation of the vector-
valued function r* = (r¢,...,r%) is based on the collaborative
likelihood-ratio estimation framework called GRULSIF [4].
The main hypotheses of that framework are that: each r is an
element of a Reproducing Kernel Hilbert Space (RKHS), and
that the graph signal r®(x) = (r{*(z),...,r%(x)) is expected
to be graph-smooth at any moment. It is easy to verify
that the latter holds for all nodes when there is no change
since p, = ¢y, and r*(z) is the constant vector 1,;, which
is a perfectly smooth graph signal. Then, our graph-smooth
assumption for r*(z) implies also that a change in the nodes
would essentially respect the graph structure.

1) Cost function: Let us introduce the RKHS H equipped
with a reproducing kernel K: X x X — R, with the associated
inner-product (-,-)y and feature map ¢(-) : X — H. Let
7,(+) be the function approximating r%(-); we suppose 7, ()
is a linear model of the form 7,(x) = (0,,¢(x))u, where
0, € H. In practice, we will have access to L elements of
a global dictionary D = {x1,...,xp} shared by all nodes.
Therefore, the vectorized form of the kernel feature map is
o(z) = (K(z,z1),...K(z,x)), Vo € X and 0, € R". The
linear model can now be expressed as:

o) = 1 00 K (2, 11), (35)

and by definition, it holds: |7, (z) — 7, (z)| < ||@(2)]] |0 — Oy ]|-
If sup,cx K(z,z) <k, then we can guarantee that #,(z) and
74, (x) are close if the parameters 6,, and 6,, are close as well.
Suppose that, at time ¢, for each node v we have access to
observations coming from the two probabilistic models p,, and
¢y, wWhich we denote by &, ; and Xé)t. We define the elements:

1 1
Hog=1 > o0)e@), Hy=— 3 o@)é@),
TEX, ¢ IEX{;,t
1
W=~ > o), (©)
xeX{,,t

with which we define the optimization Problem 7 that is made
of two terms: the first term is a least square cost function
aiming to approximate the relative likelihood-ratio at the node-
level; the second term induces smoothness to the functions
and 7, by making their associated parameters, 6,, and 6,, of any
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two connected nodes w and v, to be similar, while controlling
the risk of overfitting via the penalization term |6, ||* [12]:

. .1 1—a)0lH, .0, «ab,H] b,
min &,(6) = @IEHR}EL v Z ( ) )t n t

2 2
—729%’ t+ > W |16,

—6, +*le9 I
veV u,veV

veV

(N
Let ©; = (6],65,....0%) be the solution of Problem7, and
{#v,t(-)}vev be the estimated relative likelihood-ratio. Then
we approximate the PE-divergence PE(p%||q,) using an em-
pirical approximation of Eq.4 and the estimation 7, ;(-):

@;—tHv,tév,t ﬂ—tH; tév,t
(1_a) ) 2 —« ) 27

-
+9v7th;7t -

PEY(X,]| X)) =—
®)
1
5
The lack of symmetry of Pearson’s PE-divergence is important
for the change-point detection task. At every time ¢, we need
to compare the two samples associated with the probabilistic
models described by {p,}.ev and {g,},cv, respectively.
Depending on the which pdf is taken as numerator in & (-), the
associated PE-divergence may lead to different detection sensi-
tivity. For this reason, we estimate the parameters ét and (:)t to
approximate both PES (X, ;|| Xy t1n) and PEX(Xy ¢4 Xo.).
2) Optimization procedure: The quadratic Problem 7 ad-
mits a closed-form solution. Nevertheless, in real applications
the size of the graph and the dictionary may render this
solution infeasible. For this reason, we propose to solve the
problem via the Cyclic Block Coordinate Gradient Descent
(CBCGD) method [13], [14]. In our formulation, each block
of variables is associated with a node v, thus it contains
6,. Before applying CBCGD, we need first to define a fixed
order for updating the variables, which in our case is arbitrary
as it is not important for the convergence. Let 6., be the
set of variables that were updated before v, and 6>, be the
complement of that set. Then, the i-th update of the parameter
év’t is performed according to the schema:

4(i—1)

v,tYv,t

component depending on node v

- <(1—0&)Hu,t+OéHq/;,té(i1)_h;f,t) ©)

N vyt N

component depending on the graph

< dubS7Y =5 W 9(i11u<v+é£iz”1uzv)>1.

u€ng(v)

When no change has occurred, we expect the problem in-
stances ¢, and ®;;; to be similar. In that case, we can
initialize the problem for finding ®,,; with the solution ét.
In fact, our problem being quadratic, we can prove that by
initializing with O, the problem at time ¢+ 1 can be solved
with a manageable number of O(log®(N)) cycles. This is a
consequence of Theorem 3 in [4].

B. Detection and identification

A well-known property of PE(p,q), is that it becomes zero
if and only if p = ¢, which makes it a good candidate as a score
to validate whether a change exists [15]. Then, the definition
of a node-level score comes naturally:

S’U,t = max{PAEg(Xv’h Xv’t+n)+‘PAE;)¥ (X'u,t+nu X’U,t)a 0} (10)
The maximum is taken as the approximations can be negative.
Next we define the global score as S; =) _ Sy which
triggers a global alarm when S; > 7, with > 0 being a
threshold parameter fixed by the user. The moment 7 at which
this global alarm fires, is also the estimated occurrence time
of the associated change-point. Once a change-point has been
detected, we need to identify the affected node subset C.
For this, we identify the nodes that satisfy S, : > 1,,, where
{nw}vev is a set of positive constants given by the user.
Alternatively, the set of parameters {7, },c could be selected
via a permutation test, as described in [16], although that
would be computationally expensive for a detection method
designed to operate in near real-time.

The OCKG pseudocode is detailed in Alg. 1. Notice that we
expect by design PE,(-,-) to get its maximum value when it
compares X, » and X, r4,, which means there is always a
time lag of length n (observations) in the detection of 7. We
desire n to be as small as possible, yet guarantying a good
identification of the nodes of interest.

Dictionary. Earlier, we made the implicit hypothesis that we
have access to a predefined dictionary D. To build a dictionary
in an online fashion, we follow the approach of [17]: at each
time t a coherence measure assesses the linear dependency
of the incoming observations with the current elements of the
dictionary. The new datapoint is added into the dictionary only
if the coherence is smaller than a given threshold .

IV. EXPERIMENTS

In this section, we use two synthetic scenarios featuring
different change-points, graph structures, and window sizes,
to compare the performance of the proposed OCKG detector
with alternative non-parametric methods. First, OCKG-POOL
is a variant of the proposed OCKG method that ignores the
graph structure (i.e. W = 0j7xa7), and serves as a baseline
for assessing the benefit of using the graph. Second, Nougat
[5], [18] is a closely related non-parametric method of the
literature, which detects a change in a cluster of nodes; it
estimates the node-level likelihood-ratio via kernel methods
and a stochastic gradient descent. At each time ¢, a single
step of stochastic gradient descend is performed, and the
updated function is evaluated at time ¢+ 1 with the new
incoming observation. This is done independently for each
node. The resulting evaluation of the estimated function is
used to construct a graph signal. Finally, Nougat filters the
signal with the Graph Fourier Scan Statistic (GFSS), a graph-
based statistical test that has been used for detecting nodes
with anomalous activity [19].
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Algorithm 1 The OCKG detector

Input: « € (0, 1): parameter of the relative likelihood-ratio (see Eq.3); n: the size
of the sample to use; D1, D2: precomputed dictionaries with L; and Lo elements,
respectively; (o], A7,77), (05, A5,75): optimal hyperparemeters (see Alg. 1 in
[4]); po: coherence threshold controlling the dictionary creation; L: the maximum
dictionary size; tol: tolerated relative error for the optimization process; 7, {1, }:
threshold to raise a global alarm, 7,, threshold to raise an alarm at node v.
Output: 7: detected change-point; C': set of nodes where the change is observed.

M Initialization of parameters
1: égbo) :égbo) =0LN
B Online estimation and detection

2: fort€{n,...,} do
3: forve{l,..,N} do
4: Observe x,,¢4+n—1 and update the sliding windows X;, Xy, (Eq.2)
O Dictionary update
5: if maxje(1,... 0,3 k(Tv,1,Tv,t4n—1) < po then
6: Add 4 ¢ 4pn—1 to the dictionary D1
7 If the maximum dictionary size is reached,
delete the element with the highest coherence
8: end if
9: end for

O Parameters l_lrpdate
10: Define 9, = [G,U,t71 ,04, ], (dy the number of new elements
added to the dictionary)
11:  itialize 63°)_, =,
12: Fix X =X and X' = X4,
13: forve {1,...,N} do

14: Compute the quantities H,, H.,, h;./ (see Eq. 6)
15: FiX 77y, ¢ = max 311353%%f355hﬁ—rxdvﬂL1)

16: end fo| ) )

17: kaﬂé$>—é$*”H>em

18: forve{l,...,N} do

19: Update 521) (see Eq.9)
20: end for

21: end while

22: for ve {1,...,N} do

23: Estimate }5E$‘ (Xp,t, X! L) (see Eq.8)
24: end for '

25: Fix X = Xy, and X' = X,

26: Repeat steps 6 —22 to compute O, and P;Eg‘ (X;,‘t, Xoy.t)

27: O Online detection and Identification

28: Compute the node scores S, ¢ (see Eq. 10)

29: Compute the global score Sy = Evev Sout
30:  if S¢>mn then

31: A change-point is detected at 7 =1
32: if S,,:>mn, then

33: Add v to C

34: end if

35: end if

36: end for

37: Return 7 and C

Scenario I: Changes in node clusters. (Bivariate Gaussian
distribution — Gaussian copula with uniform marginals.) We
sample a Stochastic Block Model with 4 clusters, C1,...,C'4,
each containing 20 nodes. In this experiment, all nodes initially
follow a bivariate Gaussian model with the same covariance
matrix and mean vector. Then we pick a cluster C' at time
t = 2000. From that moment, nodes of C' start generating
observations from a Gaussian copula (~ GC') whose marginals
follow uniform distributions (~ U(—c,¢)):

4
(Iay)NN(MaE)v M:(0,0), Ez,leyzx,y:g
1
4
(CC,y)NGO, Zﬂc,levzx,y:g-

The parameter c is chosen so as the mean vector and covari-
ance matrix before and after the change-point are the same.

Y

Scenario 11: Changes in a subset of connected nodes. (Shift
in the mean of one cluster.) We generate a Barabdsi-Albert

EXPERIMENTAL Detection

SCENARIO I Detector Delay (std) AUC (std) Precision

OCKG a= 0.1 126.26 (11.95) 0.89 (0.05) 1.00

OCKG a= 0.5 129.67 (11.37) 0.85 (0.06) 0.98

n =125 OCKG-POOL v = 0.1 123.72 (24.08) 0.82 (0.05) 0.58

OCKG-POOL v = 0.5 131.90 (21.02) 0.80 (0.05) 0.80

Nougat 146.50 (70.74) 0.56 (0.22) 0.12

OCKG a= 0.1 252.72 (14.82) 0.93 (0.03) 1.00

OCKG a= 0.5 251.31 (21.82) 0.89 (0.04) 0.98

n =250 OCKG-POOL v = 0.1 249.54 (25.20) 0.86 (0.04) 0.92

OCKG-POOL v = 0.5 24532 (22.20) 0.87 (0.04) 0.94

Nougat 273.50 (96.59) 0.67 (0.19) 0.20

OCKG a= 0.1 502.70  (6.49) 0.99 (0.00) 1.00

OCKG a= 0.5 500.84  (5.15) 0.99 (0.00) 1.00

n =500 OCKG-POOL v = 0.1 506.20 (18.31) 0.99 (0.00) 1.00

OCKG-POOL v = 0.5 501.90  (7.86) 0.99 (0.00) 1.00

Nougat 576.86 (129.27) 0.66 (0.20) 0.74

EXPERIMENTAL Detection

SCENARIO II Detector Delay (std) AUC (std) Precision

OCKG a= 0.1 2544 (1.96) 0.97 (0.02) 1.00

OCKG a= 0.5 25.06 (1.34) 0.97 (0.02) 0.96

n =25 OCKG-POOL v = 0.1 2451 (1.68) 0.91 (0.03) 0.82

OCKG-POOL av = 0.5 24.44 (2.03) 0.93 (0.02) 0.86

Nougat 34.25 (13.80) 0.64 (0.17) 0.08

OCKG a= 0.1 50.38 (1.21) 0.99 (0.01) 1.00

OCKG a= 0.5 50.67 (1.48) 0.96 (0.04) 0.98

n =50 OCKG-POOL v = 0.1 48.55 (5.14) 0.91 (0.04) 0.98

OCKG-POOL v = 0.5 49.63 (2.38) 0.99 (0.01) 0.98

Nougat 77.84 (10.24) 0.75 (0.17) 0.76

OCKG a= 0.1 100.52 (1.25) 0.99 (0.00) 1.00

OCKG a= 0.5 100.16 (0.64) 1.00 (0.00) 1.00

n =100 OCKG-POOL v = 0.1 99.86 (1.23) 0.99 (0.00) 1.00

OCKG-POOL v = 0.5 100.38 (1.01) 0.99 (0.00) 1.00

Nougat 127.52 (13.87) 0.77 (0.16) 0.88

TABLE I: Performance comparison between change-point detectors
in the two synthetic experimental scenarios. Three window sizes (n)
are considered in each scenario. The mean and standard deviation of
the score is based on 50 instances of the experiments.

graph with 100 nodes. For each instance of the experiments,
we generate C' by selecting a node at random with probability
proportional to its degree, and then by picking all the nodes
that are within a distance of 4 in the graph. These nodes
suffer from a change in the probability model generating their
associated streams, and the change is set to occur at time
t =1000. In each cluster, the observed streams before and after
the change are drawn from a different multivariate Gaussian
distribution of dimension 3:

4
Ly NN(N7E)7M:O37Ei,i = 1721,2 = 5723,1 =0
4 4 (12)
Ty~ N(p,2), p=(1,0,0),%;; =1,%; o = 5723,1 =0.

Discussion on the results. Tab.1 and Fig. 2 report the average
AUC of the ROC curves and their standard deviation, as well
as the percentage of times that the change-point 7 was success-
fully detected. As expected, in both experiments, all methods
perform generally better as the number of observations in-
creases. Nougat requires the largest amount of observations to
detect 7 and identify the set C. We believe that is due to the
stochastic gradient descent step, which produces more noisy
detection scores compared with other methods. In most cases,
the comparative advantage of OCKG variants is best seen
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n=125 n=250 n=500
1.0
0.8
« 0.6
&
0.4 0.4
" —— OCKG a=0.1 (AUC = 0.89  0.05) —— OCKG a=0.1 (AUC = 0.93 = 0.03) —— OCKG a=0.1 (AUC = 0.99 = 0.00)
—— OCKG a=0.5 (AUC = 0.85 * 0.06) —— OCKG a=0.5 (AUC = 0.89  0.04) —— OCKG a=0.5 (AUC = 0.99 * 0.01)
0.2 Pool @=0.1 (AUC = 0.82 * 0.05) 0.2 Pool @=0.1 (AUC = 0.86 + 0.04) Pool @=0.1 (AUC = 0.99 + 0.00)
- Pool a=0.5 (AUC = 0.80  0.05) Pool a=0.5 (AUC = 0.87  0.04) Pool a=0.5 (AUC = 0.99 + 0.01)
0.0 Nougat (AUC = 0.56 + 0.22) 0.0 Nougat (AUC = 0.67 + 0.19) Nougat (AUC = 0.66 + 0.20)
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0
FPR FPR FPR
n=25 n=100
1.0
0.8
x 0.6
&
—— OCKG a=0.1 (AUC = 0.97 % 0.02) 0.4 —— OCKG a=0.1 (AUC = 0.98 * 0.01) —— OCKG a=0.1 (AUC = 0.99  0.00)
—— OCKG a=0.5 (AUC = 0.97 = 0.02) 5 —— OCKG a=0.5 (AUC = 0.96 = 0.04) —— OCKG a=0.5 (AUC = 0.99 = 0.00)
L o Pool a=0.1 (AUC = 0.91 + 0.03) 0.2 f Pool @=0.1 (AUC = 0.91 + 0.04) Pool @=0.1 (AUC = 0.99 + 0.00)
Pool @=0.5 (AUC = 0.93 = 0.02) Pool a=0.5 (AUC = 0.99 + 0.01) Pool @=0.5 (AUC = 0.99  0.00)
Nougat (AUC = 0.64  0.17) 0.0 Nougat (AUC = 0.75 + 0.17) Nougat (AUC = 0.76  0.16)
04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
FPR FPR FPR

Fig. 2: Each row presents results for the two synthetic scenarios. In the first column, an instance of the simulated nodes that suffer a change
is shown (yellow nodes). The rest of the columns show the mean ROC curves along with their standard deviations for the different considered
window sizes n. The mean and standard deviations are estimated based on 50 random instances of the experiments.

when fewer observations are available, as the Precision and
AUC scores suggest. Exploiting the graph structure improves
the precision of the change-point detection and reduces the
detection delay. Finally, the results suggest using small «
parameter values (e.g. a = 0.1) to keep the OCKG detector
sensitive to situations in which Pearson’s divergence between
the pre- and post-change pdfs is rather small.

V. CONCLUSIONS

In this paper, we introduced the OCKG change-point de-
tection and localization method for multivariate streams over
the nodes of a graph. Among its appealing properties, there
is its non-parametric formulation that integrates the a priori
provided information of the graph structure, and its capacity
to spot and localize in a graph different types of change-
point with minimum hypotheses. Future work may relax
the expectation of the framework that the nodes experience
changes at the same moment, which may currently lead to
a long detection delay in the case of escalating phenomena
that affect gradually more nodes over time. Combining online
likelihood-ratio estimation (e.g. [20]) with graph diffusion
effects, is a promising direction to address this limitation.
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