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Abstract—In current broadband passive sonar systems, a
human operator observes a series of sonar measurements that
represents different energy levels in the bearing and time dimen-
sions. Detecting weak noise sources amidst ambient sea noise can
be challenging. This paper proposes a lightweight neural network
based on U-Net that detects the presence of low SNR noise sources
in a multipath setting. The architecture we designed predict only
the direct path. Then, a linear detector can detect efficiently the
presence of the acoustic source from the enhanced direct path.

Index Terms—CNN, detection, contrast enhancement, sonar,
multipath beamforming

I. INTRODUCTION

Passive sonar systems are used for detecting underwater
objects without emitting sound. They display broadband sig-
nals to the operator as a 2D (bearing-time) image like the
noised one in Figure 1. In [1] we discussed the drawbacks
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Fig. 1. Comparison between a traditional detection pipeline (up) and ours
with image enhancement before the pixel-wise detection (down).

of passive sonar systems, mainly the inability to discriminate
source signal from different noise sources and the unreliability
in detecting attenuated signals. To solve these problems we
tried conventional contrast-enhancing algorithms [2], [3], [4],
[5] that must be calibrated and that produce artefact and
phantom sources. Moreover, wavelets [6], [7] have also been
explored for contrast-enhancing. However, while they offer
certain advantages, they come with their own drawbacks [8].

Thanks to ANRT agency for funding.

Wavelets suffer from artifacts such as over-smoothing and
computational complexity. We also tried a gradient-based
detection algorithm approach using Canny [9] and LSD [10].
They performed poorly in presence of strong noise. The noise
in the sonar images is too complex for this kind of algorithms
as it presents high-frequency and Gaussian components. It
makes the noise be falsely detected as a signal. Our previous
paper used a small and reliable Unet-based architecture to
enhance the noise-signal contrast. It proved well but its effects
were limited: it didn’t account for signal attenuation in time
[11], [12] and signal reflection [13], [14].

In this paper, we update the data generation process to
account for more complexity. The main contributions of this
work are manifold. First, we improve our previous sonar image
formation model by incorporating signal attenuation and re-
flection. Multipath causes ghost targets to appear dynamically
in sonar images. This new physical model is used to train
our lightweight CNN (Convolutional Neural Network), called
AntoNet, such that it can remove multipath interferences in
sonar images. Secondly, we compare several versions - with
a different number of parameters - of our linear lightweight
CNN with other state-of-the-art ones ( [15], [16], [17]).
Thirdly, after removing multipath interferences, we detect
the source signal with an almost optimal detector. We show
that AntoNet improves significantly the detection results. The
reason as to why we use a pixel-wise detector stems in sonar
image processing. It needs to be precise and to remove as much
false alarm as possible. Another reason is that CNN operate
in a local pixel setting [18]. ROC curves detection values are
directly derived from the simulation model. This makes the
detection assessment accurate and adaptable to complex sonar
images.

This paper is organized as follows. Section II describes
the enhanced sonar image formation model, including detailed
simulation of acoustic propagation and reflection phenomena.
Section III presents the AntoNet architecture and the associ-
ated contrast enhancement methodology. In Section IV, we
provide extensive numerical results and detection evaluations.
Section V concludes the paper.

II. SONAR IMAGE FORMATION

Obtaining sonar images in bearing-time like the first image
in Fig. 1 is very difficult because there are many industrial
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constraints and the ground truth generally doesn’t exist. In
order to use high-quantity of training images and to have a
better grasp of the data, we have opted to simulate our signals
and the noise.

A. Source and antenna model

We assume that the source is unique and follows a uniform
rectilinear movement over the sea. This source is emitting a
monochromatic wave with an unknown frequency ν. However,
we account for its reflections against the surface and the
seabed. We also account for its attenuation in relation to the
distance. We assume that the surfaces are not flat but irregular,
as shown in Fig. 2. This makes the sound reflections scatter
in all direction, with random amplitude [14]. Because of this,
we can assume that the three paths are independent.
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Fig. 2. Scheme of sound propagation showing the emitter, the receiver array,
and the reflection paths from the sea surface and seabed.

We define three paths; each is associated to a letter ℓ ∈
{d, s, b} that represents the index, respectively, for direct,
reflected to the surface and to the seabed trajectory. The signal
is measured with a linear array. Then, for each ℓ, we define
the steering vector h(ℓ)

t at time t as:

h
(ℓ)
t =

[
1, . . . , e

2iπνδk

(
θ
(ℓ)
t

)
, . . . , e

2iπνδK
(
θ
(ℓ)
t

)]
, (1)

with
δk(θt) = (k − 1)

d cos(θt)

c
, (2)

where d is the constant distance between sensors, c is the
wavefront speed and θ is the source angle projection onto the
antenna. Different directions have different θ.

We define the total distances traveled by the waves as Ld,
Ls and Lb. We consider a (x, y, z)-coordinate system where
(0, 0, z0) is the receiver position. The depth z is relative to the
surface and Z is the seabed depth. A short calculation yields:

Ld =
√
x2 + y2 + (z − z0)2 (3)

Ls =
√
x2 + y2 + (z + z0)2 (4)

Lb =
√
x2 + y2 + (z + z0 − 2Z)2. (5)

Each wave is attenuated by its own attenuation factor αd =
1
Ld

, αs = As

Ls
and αb = Ab

Lb
, where As and Ab are the

absorption factors of the indirect trajectories.

B. Measurement model

At time t, we assume that we have N stationary sonar
measurements st,i ∈ CK , for i = 1, . . . , N , given by

st,i = a
(d)
t,i αd h

(d)
t + a

(s)
t,i αs h

(s)
t + a

(b)
t,i αb h

(b)
t + ηt,i, (6)

where ηt,i is a sequence of independent circularly-symmetric
central complex normal noise with zero mean and covariance
matrix σ2

ηIK and IK is the identity matrix of size K. The
signal amplitudes a(ℓ)t,i are independent sequence of complex
normal variable with zero mean and variance σ2

a for each
source, due to the reflections on rough surfaces. Hence, the
sonar measurements are processed as a batch of N vectors of
size K. The SNR, measured in dB, is defined by

SNR = 10 log10

(
ϱ2
√
N
)
,with ϱ2 =

σ2
a

Kσ2
η

, (7)

where ϱ2 is the peak-SNR.
Let

g+
j = [1, . . . , e−iπk j

K−1 , . . . , e−iπ(K−1) j
K−1 ] (8)

be the steering vector for the jth channel beamforming when
j = 0, . . . ,K−1. The integrated energy xt,j on the jth channel
at time t is computed by

xt,j =
1

N

N∑
i=1

∣∣g+
j st,i

∣∣2, (9)

where g+ denotes the conjugate transpose of the vector g. Let
us define G(ℓ)

t,j for each ℓ ∈ {d, s, b} as

G
(ℓ)
t,j = g+

j h
(ℓ)
t =

K∑
k=1

e−iπ j
K−1 (k−1) e

2iπν δk

(
θ
(ℓ)
t

)
. (10)

We finally get

xt,j =
1

N

N∑
i=1

∣∣∣∣∣∣
∑

ℓ∈{d,s,b}

a
(ℓ)
t,i αℓG

(ℓ)
t,j + g+

j ηt,i

∣∣∣∣∣∣
2

. (11)

Let us denote H0(t, j), resp. H1(t, j), the case when the
acoustic source is not present, resp. is present, in the channel
j at time t. After an appropriate standardization of the channel
(we do not change the notation to keep it simple), we get the
following asymptotic distribution

xt,j∼N→∞

{
N (0, 1) under H0(t, j),

N
(
ϱ2t,j

√
N,
(
1+ϱ2t,j

)2)
under H1(t, j),

(12)

with

ϱ2t,j =
σ2
a

Kσ2
η

(
|αdG

(d)
t,j |

2 + |αsG
(s)
t,j |

2 + |αbG
(b)
t,j |

2
)
. (13)

The derivation of this approximation is based on the fact that
the reflected signals are independent from the direct one and
that the amplitudes are i.i.d.

The sonar image is then defined as the matrix

X = (xt,j)1≤t≤T,0≤j≤K−1 ∈ RT×K (14)
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where T is the last measurement time. Since we want to
remove the reflected signals and the noise, we want to predict
the SNR image given by

Y = (yt,j)1≤t≤T,0≤j≤K−1 ∈ RT×K (15)

with

yt,j =

{
0 under H0(t, j),

ϱ̃2t,j
√
N under H1(t, j),

(16)

where ϱ̃2t,j is the SNR of the direct trajectory:

ϱ̃2t,j =
σ2
a

Kσ2
η

|G(d)
t,j |

2. (17)

Fig. 3 shows the noisy sonar image and the labeled image with
a -2dB signal.

Noisy Image Target

Fig. 3. An example of generated sonar image X (left) and its associated label
image Y (right) for a -2dB SNR source signal.

C. Pre-processing

To help the CNN with the learning, we apply simple contrast
enhancing algorithms to all the images. For each pixel xt,j ,
we first apply C : R → R such that

C(x) =

{
α · ξ(x), if ξ(x) ≤ γ

1 + α · γ · ln(ξ(x)), if ξ(x) > γ
(18)

ξ(x)=
x− xmin

xmax − xmin
, α=

1

γ · (1− ln(γ))
, γ=

xthreshold − xmin

xmax − xmin
,

and xthreshold is chosen such that we can control where to scale
the high values. This function helps to scale stronger values
while retaining unchanged weakest ones. The function C is
invertible ; its inverse is denoted C−1.

We then define the preprocessing function ψ : R → R to
scale higher noise values and remove negative values:

ψ(xt,j) =

{
log(a+ C(xt,j)) if C(xt,j) ≥ b,

0 otherwise,
(19)

with a = C(4) and b = C(−3). This function would help
the CNN without removing significant information. It removes
only extremely negative noise values. We have chosen b =
C(−3) to remove noise values and a = C(4) to avoid already
negative/zero values with the logarithm. The function ψ is not

bijective. To make the output comparable to the input X we
define ψ− such that:

ψ−(u) = C−1(eu − a). (20)

Our neural network is designed to approximate the prepro-
cessed label ψ(Y ) for the input X where the notation ψ(Y )
means that ψ is applied to each pixel of Y . The post-processing
ψ− allows us to revert the estimated label computed by our
neural network to the original noised signal domain.

III. CONTRAST ENHANCEMENT WITH A CNN

We suppose to have a data set consisting of N sonar image
pairs (X(n), Y (n)) where X(n) is given in (14) and Y (n) is
defined in (15). We choose, to estimate the source power, the
empirical mean square error (MSE) as the loss function:

M̂SE(f)=
1

NTK

N∑
n=1

T∑
t=1

K−1∑
j=0

(
f(ψ(x

(n)
t,j )))−ψ(y

(n)
t,j )

)2
. (21)

To enhance the contrast in the sonar images, we will
compare different versions of AntoNet [1] which is a small and
interpretable variant of Unet [19], calibrated to better suit our
problem. While other networks inspired by Unet, such as C-
Unet [15] or DeepUnet [20] are similar to ours in architecture,
they are better suited for classification or segmentation. They
also contain non-linearities, making them difficult to interpret.
AntoNet structure is shown in Fig. 4. It belongs to the family
of encoder-decoder models: its structure is composed of two
parts, the encoding and the decoding. Concretely, we have 4
encoding and 4 decoding layers. Each encoding component is
formed by one convolution followed by an Average Pooling.
The decoding layers have transpose convolutions followed by
a classic one. After many attempts to keep the model as simple
as possible, we decided to make it such that each convolution
layer has 3 feature maps. We refer to it as the “classic”
AntoNet. We explore also how the parameter number and the
depth of the model play a role in performance detection. It
is also relevant to compare it to C-Unet, a shallow model but
with a high-parameter count, as discussed in section IV.

These architectures are trained on a training dataset consist-
ing on 20,000 sonar images of size 256x256 pixels with SNR
varying between −10 dB and 10 dB. They are tested on 2,000
test sonar images with a given SNR of -2 dB and same size
of the trained ones. Since Unet and Orca have very similar
architectures, their differences are minimal when we adapt
them to a contrast-enhancement task. To make the comparison
interesting, we use a Unet variant that has 16 Feature Maps
(FM) in the first layer instead of 64. We refer to it as Unet-16.

The test is done on C-Unet, Unet-16, ORCA and different
AntoNet configurations. In fact, it is interesting to see how
much the parameter number and the model depth influences
the result. We therefore propose 4 AntoNet settings: the origi-
nal architecture, a deeper one, a 1 FM per layer version and a
10 FM per layer one. We evaluate our approach with different
metrics: training time, inference time and ROC curves. Note
that the non-linearities have already been explored in [1] and it
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Fig. 4. AntoNet structure: 4 encoding layers consisting of one convolution
followed by a pooling operation each. They are followed by 4 decoding layers
separated by oversampling and concatenated with the encoded layers of the
same dimension.

was shown that they didn’t significantly influence the contrast-
enhancement performance.

Tables I and II compare the models in terms of the number
of parameters, the memory they occupy and the training
epoch/inference time. Our model, running in a laptop RTX

TABLE I
COMPARISON OF MODEL SIZES, TRAINING AND INFERENCE TIME

Model C-Unet Unet-16 ORCA/UNet
#Params 213k 1.94M 57.14M
Training (epoch) 58s 350s 724s
Testing 5s 40s 58s

TABLE II
COMPARISON OF MODEL SIZES, TRAINING AND INFERENCE TIME

AntoNet Classic 1 FM 10 FM Deep
#Params 1.19k 148 12.6k 1.5k
Training 7s 3s 15s 9s
Testing 900ms 500ms 3s 1.48s

4090 GPU, takes less than one second to test 2,000 images
while Unet-16, resp. ORCA, takes 40, resp. 58, seconds.
Applied on the same image, the different AntoNet settings
give similar visual contrast enhancement as shown in Fig. 5.

AntoNet 1 FM AntoNet

Deep AntoNet 10 FM AntoNet

Fig. 5. All models predictions, we can see a small trace of the reflected source
to the right that was invisible in the noised image due to the low signal power.
The label is shown in Figure 3.

IV. DETECTION PERFORMANCE RESULTS

We evaluate AntoNet performance for detecting signal pix-
els with a dedicated detector. The performance of a detector
assuming a binary decision hypothesis test is characterized by
ROC curves. In our case, the test is derived from the hypothe-
ses (12). After applying AntoNet or any other algorithm, we
suppose that the reflected signals have been removed. Hence,
hypothesis H0 = H0(t, j) corresponds to noise only or to
a removed reflected signal in pixel (t, j). In other words,
we assimilate reflected signals to background noise after the
preprocessing. If we decide H1 = H1(t, j) for a pixel that
initially contains a reflected signal, it is considered as a false
alarm. Hence, we want to decide between the two following
hypotheses:

x ∼ N (0, 1) under H0, (22)

x ∼ N
(
ϱ2
√
N,
(
1 + ϱ2

)2)
under H1, (23)

where ϱ > 0 is known. A short calculation (ignoring some
constant terms) yields

δ∗(x) =

 H0 if Λ∗(x) = x+

(
1+ ϱ2

2√
N

)
x2 < λ,

H1 otherwise.
(24)

Assuming that N is large enough and that ϱ2 is low enough,
we can approximate δ∗(x) by the linear test

δ∗lin(x) =
{

H0 if Λ∗
lin(x) = x < λ,

H1 otherwise.
(25)

This gives us the probabilities of detection and false alarm,
Pd and Pfa in function of ϱ2:

Pfa = P(x > λ|H0) = 1− Φ(λ), (26)
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Pd(ϱ
2) = 1− Φ

(
λ− ϱ2

√
N

1 + ϱ2

)
, (27)

where Φ(·) denotes the cumulative distribution function of the
standard normal distribution.
ROC curves in Fig. 6 show different versions of our model
detection performance for signals with a -2dB SNR. We can
see here that more parameters yields better performance for
the linear model, while a deeper version isn’t significantly
better. They all however perform relatively well against a noisy
input. In Fig. 7 we took our original model and compared its
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Fig. 6. ROC curves comparing the noisy input with different AntoNet output
using a pixel-wise detector performance.

detection performance with different models. It outperforms
the others by a large margin while retaining a low parameter
count. Linear models, compared to nonlinear large ones (Orca,
UNet-16) behave differently. In fact, while ours are well suited
for these kind of tasks, bigger models apply a much more
aggressive cleaning. In fact, they produce almost zero false
alarms but they remove low-SNR signals too.
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Fig. 7. ROC curves comparing the noisy input with various models output
using a pixel-wise detector performance.

V. CONCLUSION

This paper proposes a lightweight CNN suitable for cheap
hardware. The use of linear operations and reduced complexity
makes possible the interpretation of the results. Its perfor-
mance is comparable to bigger models for low SNR.
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