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Abstract—A Cramér-Rao bound (CRB) minimization frame-
work for continuous aperture arrays (CAPAs) is proposed in this
work. Specifically, the wavenumber-domain method is adopted
to discretize the continuous current density function on the
transmit CAPA. Based on this, the CRB is derived for monostatic
target positioning in the near-field region. The Green’s function
inherently captures the distance dimension, enabling both angle
and distance estimation. To enhance sensing performance, a
CRB minimization problem is formulated under the unit-power
constraint. Thanks to the discretization in the wavenumber
domain, the optimization can be conducted over discrete basis
function coefficients, instead of a continuous current density func-
tion. Consequently, a manifold-based gradient descent method
is employed. Simulation results showcase the effectiveness of
the proposed method and demonstrate the CRB performance
of CAPAs in the near-field monostatic sensing scenario.

I. INTRODUCTION

Since the first-generation (1G) communication networks
were introduced in the 1980s, communication functionalities
have been extensively explored and completely transformed
people’s daily lives. With the commercialization of the fifth
generation (5G) in recent years, the sensing functionality of
wireless signals has attracted significant attention from both
academia and industry [1], [2].

To enhance the sensing performance, multiple-input and
multiple-output (MIMO) is promising as an enabling tech-
nology, as it can provide high sensing resolution by emitting
pencil-like narrow beams. In recent years, the adoption of
high-frequency bands and extremely large-aperture aperture
arrays (ELAAs) has further expanded the potential of MIMO
sensing. Specifically, with high carrier frequencies and larger
aperture sizes, the near-field region can be extended to tens or
even hundreds of meters, thereby leading to non-negligible
spherical wave propagation. Due to the curvature of im-
pinging signals in the near field, the phases of signals are
non-uniformly distributed across the receiving antenna array.
Leveraging this feature, signals arriving from the same angle
but originating at different distances can be distinguished, thus
adding an additional distance dimension to the conventional
far-field angle-only sensing. To further improve the sensing
capability of MIMO, more antennas are integrated within a
given physical size, driving the evolution from massive MIMO
to gigantic MIMO [3] and ultimately leading to continuous
aperture arrays (CAPAs). Compared to conventional spatially
discrete arrays (SPDAs), CAPAs pack an infinite number of

antennas within a finite array aperture size, thus forming
a spatially continuous antenna aperture. With its continuous
placement of antennas, CAPA is a promising candidate to
fulfill the high spectral efficiency and high-accuracy sensing
requirements of the upcoming 6G technologies [4]. In prac-
tice, antenna society has developed many prototypes of near-
continuous aperture arrays, such as optically driven tightly
coupled arrays in [5] and interdigital transducer-based grating
antennas in [6].

Compared to the fruitful research endeavors in the com-
munication functionality of CAPAs [4], the sensing func-
tionality remains underexplored. Most existing studies derive
fixed CRB based on predefined continuous source current
functions, without considering CRB optimization [7]–[9].
However, CRB optimization is important in enhancing the
sensing performance, as revealed by research on the SPDA-
aided sensing cases [10]. Unlike SPDA cases, the continu-
ous nature of current density functions makes optimization
intractable. Moreover, sensing requires handling continuous
current functions for both probing signal transmission and
echo reception, further complicating CRB optimization. As
a remedy, the authors in [11], [12] proposed a wavenumber-
domain sampling method that can discretize the continuous
current density function to discrete samples, thus enabling
optimization. Inspired by this wavenumber-domain method,
we first derive the CRB expression based on the wavenumber-
domain sampling of the current. Then, a manifold-based gra-
dient descent method is employed to minimize CRB under the
unit-power constraint. Finally, numerical results are presented
to verify the derivations and the effectiveness of the proposed
method.

Notations: Scalars, vectors, and matrices are denoted by
the lower-case, bold-face lower-case, and bold-face upper-
case letters, respectively. ℜ{(·)} and ℑ{(·)} are the operations
to extract the real and imaginary parts of (·). Tr{(·)}, (·)⊺,
(·)∗, (·)H, and [·]−1 represent the trace, transpose, conju-
gate, conjugate transpose, and matrix inversion operations,
respectively. RM×N and CM×N denote the M ×N real and
imaginary matrix space. [(·)]ij means to take the (i, j)-th entry
of matrix/vector (·). j =

√
−1 is the imaginary unit.

II. SYSTEM MODEL

The CAPA-aided near-field sensing framework is shown
in Fig. 1, where a base station equipped with linear CAPAs
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Fig. 1: An illustration of the CAPA-aided single-target posi-
tioning system model in the near-field region.

positions a single point-like target in a monostatic manner 1.
This system aims to estimate the position of the target via
probing transmissions and echo receptions. Specifically, the
BS will send the probing signal to the target using Tx-CAPA
while receiving the reflected echo signal by Rx-CAPA. The
whole system is located on the XOY plane, and the coordinate
origin is set at the center of the Tx-CAPA and Rx-CAPA. The
linear Tx-CAPA and Rx-CAPA are placed along the x-axis,
whose lengths are specified by Dt and Dr, respectively. We
assume that the target is located within the radiating near-field
region of the BS.

A. Spatial-Domain Signal Model

Without loss of generality, the coordinate region of the Tx-
CAPA and Rx-CAPA can be specified by

Dt =
{
p ≜ [px, py]

⊺ : −Dt ≤ px ≤ 0, py = 0
}
,

Dr =
{
q ≜ [qx, qy]

⊺ : 0 ≤ qx ≤ +Dr, qy = 0
}
.

It is noted that, due to py = qy = 0, the source currents and
the channel responses do not vary concerning the y-axis. The
location of the sensing target is specified by r ≜ [rx, ry]

⊺ ∈
R2×1. Building on the above, the scalar green’s function g (·, ·)
is specified by [14]:

g (y,x) =
jη0k0e

−jk0∥v∥2

4π ∥v∥2
, (1)

wherein v ≜ y − x is the vector from the source at x to the
destination at y, η0 = 120π denotes the intrinsic impedance
of free space, and k0 = 2π/λ denotes the wavenumber
with λ being the carrier wavelength. This function describes
a mapping from a scalar source current s(p) at position
p to an induced scalar radiating field e(q) at position q.
Considering both the probing signal transmission and the echo
signal reception, we will present the modeling of the round-
trip channel in what follows. As illustrated in Fig. 1, an
arbitrary length infinitesimal at p on Tx-CAPA, i.e., dx ∈ Dt

1For the mutual coupling issues incurred by the ultra-dense arrangement
of antennas, readers are encouraged to refer [13]. This paper deals with the
ideal scenario, highlighting the performance upper bound of CAPA.

emits an EM signal according to the source current function,
which is then reflected by the target and received by a length
infinitesimal at q on Rx-CAPA, i.e., dx ∈ Dr as echo signal.
Given the reciprocity theorem in [15], the coupling response
(or scattering response) can be expressed as

c(n, r,m) = αδ(r− n)δ (r−m) , (2)

where α ∈ C denotes the attenuation and polarization on the
target, and δ(·) is the Dirac function. Hence, the round-trip
channel can be expressed as

h (q,p) =

∫ ∫
A
g (q,n) c(n, r,m)g (m,p) dndm

=

∫ ∫
A

jη0k0e
−jk0∥q−n∥2

4π ∥q− n∥2
αδ(r− n)δ (r−m)

× jη0k0e
−jk0∥m−p∥2

4π ∥m− p∥2
dndm

(a)
= αc

e−jk0∥q−r∥2

∥q− r∥2
e−jk0∥r−p∥2

∥r− p∥2
, (3)

where c ≜ (jk0η0/ (4π))
2, A denotes the entire free space,

and (a) is obtained using the property of the Dirac function,
Denoting k ≜ q− r and κ ≜ r− p, the transmit and receive
array response of the target can be expressed as

at(k) ≜
1

∥k∥2
e−jk0∥k∥2 , (4)

ar(κ) ≜
1

∥κ∥2
e−jk0∥κ∥2 . (5)

According to [7] and [8], the electronic field at the receiver
e(q) induced by a current density at the transmitter j(p)
can be bridged by the Green’s function. As a result of the
adaptation of the scalar Green’s function in (1), the received
echo signal y(q) at Rx-CAPA in the presence of noise can be
expressed as

y (q) = e(q) + n (q) , (6)

where the excited electric filed e(q) is defined by

e(q) ≜
∫
Dt

h (q,p) j(p)dp =

∫ 0

−Dt

h (qx, px) j(px)dpx.

(7)

Moreover, the noise term n(q) ∈ C with q ∈ Dr follows a
spatially uncorrelated zero-mean complex Gaussian process.
The correlation function of this process is demonstrated by

E{n(q)nH(q′)} = σ2δ(q− q′), (8)

where σ2 denotes the power angular density. Here, a spatially
white noise model is adopted for simplicity [4]. It is worth
noting that the term δ(q − q′) in (8) reveals that the noise
is uncorrelated across different points q and q′ on Rx-CAPA.
Besides, we consider unit power current density function and
add the transmit power term into h(p,q) by c0 =

√
Pc.
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B. Wavenumber-Domain Signal Model

Although (7) discloses the relationship between transmis-
sion and reception, the continuous nature renders such an ex-
pression less tractable in analysis and optimization. To address
this issue, the wavenumber-domain method is widely used to
discretize (7) using the sampling technique in the wavenumber
domain. Specifically, the steps for the wavenumber-domain
analysis are: 1) expanding j(p) using two-dimensional Fourier
space series at the transmit end, and 2) projecting e(q) onto
a finite-dimensional space spanned by Fourier basis functions.
Accordingly, we first express the continuous current density
function j(p) as a weighted summation of basis functions
{ix ∈ Kt : ϕix (p) ∈ C} with weights {ix ∈ Kt : ϑix ∈ C}, in
which Kt denotes the index set for discrete basis functions.
Therefore, the current density function can be expanded as

j (p) =
∑

ix∈Kt

ϑixϕix (p), (9)

where the weight ϑix and the basis function ϕix (p) are
respectively given by

ϑix =
1√
Dt

∫
Dt

j (p)ϕ∗
ix (p) dp, (10)

ϕix (p) =
1√
Dt

exp
{
jk⊺

ix
p
}
. (11)

Here, kix denotes the discrete version of k obtained by
wavenumber-domain sampling and can be defined by kix =
[2πix/Dt, 0]

⊺ ∈ R2×1. Here, k is sampled along the x-axis
with an interval of 2π/Dt, also known as spatial frequency.
Since the evanescent near-field region is excluded in our
system model, the entries of kix are confined by ∥kix∥2 ≤ k0.
Therefore, the index set can be expressed as

Kt ≜
{
ix ∈ Z : (2πix/Dt)

2 ≤ 4π2/λ2
}
. (12)

By doing so, we can approximate the continuous current
density function with finite basis functions. In this case, the
excited electric field e(q) can be expressed as

e(q) =

∫
Dt

h (q,p) j(p)dp

≈
∫
Dt

h (q,p)
∑

ix∈Kt

ϑixϕix (p)dp

=
∑

ix∈Kt

(∫
Dt

h (q,p)ϕix (p)dp

)
ϑix

=
∑

ix∈Kt

H (−kix)ϑix , (13)

where H (−kix
) = F {h (q,p)} |−kix

denotes the spatial
Fourier transformation results evaluated at spatial frequency
−kix

. From the optimization perspective, we can manipulate
{ϑix}ix∈Kt to design favorable e(q).

III. PROBLEM FORMULATION

To characterize the sensing performance, we adopt CRB as
the performance metric, which provides a lower bound on the
variance of the unbiased estimator and is widely used. The
objective of optimization is to minimize the CRB to enhance

the estimation accuracy. In the following, we will present the
derivation of CRB and formulate the resultant optimization
problem.

A. Wavenumber-Domain CRB Derivations

Given that the position and the reflection coefficient of the
sensing target need to be estimated, the unknown parameter
vector ξ can be expressed as ξ = [r⊺,α⊺]

⊺ ∈ R4×1, where
α ≜ [ℜ{α} ,ℑ{α}]⊺ contains the real and imaginary parts of
the reflection coefficient of the target. To derive CRB, we first
calculate the Fisher information matrix (FIM) for estimating
ξ, which is given by a partitioned matrix as

Fξ =

[
Frr Frα

F⊺
rα Fαα

]
. (14)

According to [7], we have that Frr, Fαα, and Frα are
originally expressed as:

[Frr]m,n =
2

σ2

∫ Dr

0

ℜ
{
∂e (qx)

∂ [r]m

∂e∗ (qx)

∂ [r]n

}
dqx, (15)

[Fαα]m,n =
2

σ2

∫ Dr

0

ℜ
{
∂e (qx)

∂ [α]m

∂e∗ (qx)

∂ [α]n

}
dqx, (16)

[Frα]m,n =
2

σ2

∫ Dr

0

ℜ
{
∂e (qx)

∂ [r]m

∂e∗ (qx)

∂ [α]n

}
dqx. (17)

In what follows, we will present the calculation of each partial
derivative term. According to (10), (11), and (13), the partial
derivatives with respect to r can be derived as follows:

∇re(q) = ∇r

{∑
ix∈Kt

(∫
Dt

h (q,p)ϕix (p)dp

)
ϑix

}
=

∑
ix∈Kt

(∫
Dt

∇rh (q,p)ϕix (p)dp

)
ϑix

=
∑

ix∈Kt

H ′ (−kix

)
ϑix , (18)

in which H ′(−kix
) = F{ḣr} |−kix

denotes the Fourier

transform of ḣrn evaluated at −kix
, and

ḣr ≜ ∇rh (q,p) = ∇r ( ar (κ)αat (k))

= (∇rar (κ))αat (k) + ar (κ)α (∇rat (k)) . (19)

In (19), ∇rar (κ) and ∇rat (k) can be derived as

∇rat (k) = − r

∥k∥32
(1 + jk0 ∥k∥2) e

−jk0∥k∥2 ,

∇rar (κ) =
r

∥κ∥32
(1 + jk0 ∥κ∥2) e

−jk0∥κ∥2 .

Moreover, the partial derivative with respect to the real and
imaginary parts of the reflection coefficient α can be derived
through

∂e(q)

∂ℜ{α}
= ℜ

{∑
ix∈Kt

F
{
ḣℜ{α}

}
ϑix

}
, (20)

∂e(q)

∂ℑ{α}
= ℑ

{∑
ix∈Kt

F
{
ḣℑ{α}

}
ϑix

}
, (21)
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where we have

ḣℜ{α} ≜
∂h (q,p))

∂ℜ{α}
= c0ar (κ) at (k) ,

ḣℑ{α} ≜
∂h (q,p))

∂ℑ{α}
= jc0ar (κ) at (k) .

With (18), (20) and (21), the entries of (15), (16), and (17) can
be obtained. To deal with the outer integration over the coor-
dinate region of the Rx CAPA, we adopt the Gauss–Legendre
integration to evaluate the numerical results, which can replace
intractable integrations with weighted summations. Then, on
top of Fξ, the CRB matrix for estimating ξ in the discrete
case can be written as

CRB (Frr) =
[
Frr − FrαF

−1
ααF

⊺
rα

]−1
. (22)

B. CRB Minimization Problem Formulation

Based on the above derivations, we intend to minimize the
CRB to enhance the sensing accuracy while preserving the
constraint on the total power budget. Thus, the optimization
problem can be formulated as

min
ϑ

Tr {CRB (Frr)} (23a)

s.t.
∑

ix∈Kt

|ϑix |
2
= 1, (23b)

where ϑ ≜ {ϑix}ix∈Kt
denotes the Fourier coefficients

vector. According to (23a), both the objective function and
constraint are defined by the discrete Fourier coefficients
obtained through wavenumber-domain sampling, rather than
the intractable continuous source current function. To handle
the unit-power constraint in (23b), we apply the manifold
gradient descent method for efficient optimization, which will
be detailed in Section IV.

IV. METHODOLOGY

According to (23a), we aim to design the discrete weights,
i.e., ϑ, rather than a continuous current density function j(p)
directly. To simply the optimization problem, the constraint
(23b) can be recast as

∥ϑ∥22 =
∥∥Vect{{ϑix}ix∈Kt

}∥∥2
2
= 1. (24)

Therefore, the feasible set of the original optimization problem
is now constrained on the surface of the sphere with a unit
radius. Motivated by this, we exploit the Riemannian manifold
optimization technique. Specifically, we define the sphere
manifold as follows:

M ≜
{
ϑ ∈ C|Kt|×1 : ϑHϑ = 1

}
, (25)

where |Kt| represents the cardinality of set Kt. Therefore, by
performing gradient descent on M, the original problem can
be converted into an unconstrained counterpart. In this case,
the gradient descent method can be utilized to minimize the
objective function. To enable gradient descent, we first need
to define the gradients on M. Based on the definition of inner
product presented by (25), the tangent space is defined by

TϑM ≜
{
η ∈ C|Kt|×1 : ηHϑ = 0

}
, (26)

Algorithm 1: Manifold-Based CRB minimization
Input: Initial guess ϑ0, round-trip channel h(q,p),

error-tolerant threshold δ, maximum number of
iterations K, sampled wavenumber-domain vectors
and associated weights, and initial step index k = 0.

Output: The optimized weight vector ϑ.
// Prerequisite Step:

1 Calculate the initial gradient descent direction via
d0 = −gradϑ {u (ϑ0)} according to (27) ;
// Preforming Conjugate Gradient Descent:

2 while (∥u(ϑk+1)− u(ϑk)∥2 ≥ δ and k < K) or k = 0 do
3 Find the step size αk by Armijo backtracking line

search;
4 Find the next point ϑk+1 via traction

ϑk+1 = retrϑ {αkdk} according to (28);
5 Compute the Riemannian gradient at point ϑk+1 via

ηk+1 = gradϑ {u (ϑk+1)};
6 Calculate the conjugate direction coefficient βk;
7 Update the search direction via

dk+1 = −ηk+1 + βktransϑk→ϑk+1 {dk};
8 Step into the next iteration by k = k + 1;
9 end

10 return The optimized weight vector ϑ = ϑk.

which describes all the vectors perpendicular to ϑ. Then, the
Riemanian gradient defined by the steepest direction on M
can be expressed by

gradϑ {u (ϑ)} = ∇ϑu (ϑ)− ϑ
(
ϑH∇ϑu (ϑ)

)
= η, (27)

where u (ϑ) ≜ Tr{CRB (Frr)}. To project the gradients
back to M, we define the retraction operator, which can map
a search direction d = −αη on the tangent space to the
manifold and is characterized by

retrϑ {d} ≜ ϑ+ d/∥ϑ+ d∥2, (28)

where d ∈ TϑM and α > 0 denotes the step size. Addition-
ally, we need to define a transport operation, which maps two
directions of two different tangent spaces and is given by

transϑk→ϑk+1
{dk} = dk − ϑH

k+1dk = dk+1, (29)

where dk+1 and dk are two point on M and
transϑk→ϑk+1

{η} maps the tangent space at ϑk+1 and
ϑk respectively, i.e., Tϑk+1

M and Tϑk
M. Furthermore, we

adopt the Polak-Ribière conjugated gradient descent method.
Thus, the overall algorithm is summarized in Algorithm 1.

V. SIMULATION RESULTS

In this section, simulation results are presented to verify the
derivations and the effectiveness of the proposed algorithms.
The coordinate range of Tx-CAPA and Rx-CAPA are specified
by [−1 m, 0 m] and [0 m, 1 m], respectively. The transmit
power and noise power are set to 20 dBm and 0 dBm,
respectively. The reflection coefficient is α = 10 + 10j. The
carrier frequency is set to 28 GHz. The number of Gaussian-
Legendre (GL) points used for numerical integration is set to
300. The maximum number of iterations is set to K = 50,
with δ = 10−4 being the tolerance threshold.
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Fig. 2: Illustration of the impact of the number of GL points
and the convergence behavior of the proposed algorithm.
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Fig. 3: Illustration of the achieved CRB versus angle and
transmit power.

Fig. 2 shows the impact of the number of GL points and the
convergence behavior. It can be observed that the numerical
integration converges when the number of GL points is set
to 200, which justifies our simulation setups. Then, Fig. 2b
illustrates the effectiveness of the proposed manifold gradient-
descent for CRB minimization.

In Fig. 3, we investigate the impact of angles and transmit
power on the achieved CRB. As shown in Fig. 3a, we place
the sensing target at different angles in front of the Rx-
CAPA. Two distance settings of 5 m and 10 m are considered.
The asymmetry of the curves arises from the non-symmetric
placement of the Tx- and Rx-CAPA. Fig. 3b shows that the
CRB decreases with increasing transmit power and that higher

carrier frequencies further improve CRB performance.

VI. CONCLUSIONS

This paper investigated the CRB minimization problem
for CAPAs in the near-field monostatic sensing scenario. In
particular, to enable optimizations, the wavenumber-domain
method is utilized to discretize the continuous current density
function on the Tx-CAPA by sampling finite terms from the
wavenumber domain. Building on this, CRB is derived based
on discrete wavenumber-domain samples. Then, a manifold
gradient descent method is applied to minimize CRB, im-
proving sensing performance. Finally, numerical results are
presented to confirm the effectiveness of the proposed method.
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