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Abstract—The conventional MUltiple SIgnal Classification
(MUSIC) algorithm is effective for angle-of-arrival estima-
tion in the far-field and can be extended for full source
localization in the near-field. However, it suffers from high
computational complexity, which becomes especially prohibitive
in near-field scenarios due to the need for exhaustive 3D
grid searches. This paper presents a machine learning-based
approach for 3D localization of near-field sources in mixed
line-of-sight (LoS)/non-LoS scenarios. A convolutional neural
network (CNN) learns the mapping between the eigenvectors
of the received signal’s covariance matrix at the anchor node
and the sources’ 3D locations. The detailed description of the
proposed CNN model is provided. The effectiveness and time
efficiency of the proposed CNN-based localization approach is
corroborated via numerical simulations.

Index Terms—3D localization, MUSIC algorithm, convolu-
tional neural networks, near-field propagation.

I. INTRODUCTION

Wireless localization has long been a fundamental prob-
lem in array signal processing with applications in various
fields such as sonar, radar, indoor positioning systems,
cellular communications, search and rescue operations, and
wireless sensor networks [1]–[3]. With the advent of new
technologies such as autonomous systems and smart cities,
and the need for accurate location information for seamless
connectivity in wireless communications, localization has
become a cornerstone for next-generation wireless networks.

Among numerous localization techniques, MUltiple SIg-
nal Classification (MUSIC) is one of the most prominent
ones due to its high resolution and accuracy, ability to lo-
cate multiple sources simultaneously, and robustness against
noise. This technique was initially developed for angle-of-
arrival (AoA) estimation [4] and later extended to near-
field localization where both the azimuth AoA and range of
the near-field sources were estimated to locate the sources
[5]. However, MUSIC requires a high-resolution grid to
accurately localize near-field sources, which leads to a
high computational complexity. This computational burden
becomes prohibitive in 3D localization scenarios using a uni-
form planar array (UPA) as the anchor node, where azimuth
AoA, elevation AoA, and range must be estimated. In such a
case, the complexity grows cubically with the grid resolution
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per dimension. Some techniques have been developed lately
for reducing the complexity of 3D MUSIC by decoupling
the AoA and range estimation problems [6], [7]. These
techniques relax the 3D spectral search by transforming it
into a 2D search and multiple 1D searches; however, the
2D search still possesses a relatively high computational
overhead, especially for a fine grid resolution.

Recently, machine learning, and specifically its specialized
branch of deep learning (DL), has gained interest as a
promising approach to address the challenges faced by the
MUSIC algorithm. Reference [8] proposes a multi-layer per-
ceptron neural network architecture to estimate the azimuth
AoAs of two sources using one snapshot of received signals.
In this work, an artificial neural network (ANN) is trained us-
ing simulated and real-world data and the spatial covariance
matrix is set as the ANN input. One of the most popular DL
models is the convolutional neural network (CNN), which
is designed to process structured data. CNNs use layers
of filters to extract important features automatically and
reduce the need for manual feature selection [9], [10]. A
DL framework is introduced in [11] with multiple CNNs,
each dedicated to a sub-region of the angular spectrum.
The covariance matrix is taken as the input and the CNNs
are trained to predict the spectrum for their assigned sub-
region. Another CNN-based approach is developed in [12] in
which a multi-path propagation environment is considered,
the eigenvectors of the covariance matrix are used as the
input, and the CNN outputs the azimuth AoA of two sources.
Reference [13] considers a 4 × 4 UPA as the anchor node
and develops a CNN model for estimating both azimuth and
elevation AoAs of the sources.

This paper introduces a machine learning-based approach
for near-field localization in mixed line-of-sight (LoS)/non-
LoS (NLoS) environments. The models proposed in [8],
[11]–[13] are not applicable to the 3D localization frame-
work considered in this paper, as they are limited to estimat-
ing the sources’ AoAs without providing range information.
We implement a CNN architecture that processes the eigen-
vectors of the received signal’s covariance matrix to directly
estimate the 3D coordinates of near-field sources in the x-y-z
plane. We validate the effectiveness of the proposed approach
by comparing it with the MUSIC algorithm, demonstrating
that our method achieves comparable or better performance
while significantly reducing computational overhead and
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runtime.

II. SYSTEM MODEL

Assume that an anchor node in the form of a UPA with
N = Ny × Nz antennas, located in the y-z plane, aims
to estimate the location of K near-field signal sources. At
discrete time slot t, the received signal at the anchor node
is given by

x(t) =

K∑
k=1

hksk(t) + n(t), (1)

where x(t) = [x1(t), . . . , xN (t)]T is the signal received by
the N antennas of the anchor node, sk(t) is the random
signal from the kth source, which is unknown to the receiver,
and n(t) = [n1(t), . . . , nN (t)]T is the additive independent
complex Gaussian noise. The signals are assumed to be
uncorrelated across different sources and different time slots.
Furthermore, hk ∈ CN represents the channel between the
kth source and the anchor node which consists of both LoS
and NLoS components. Specifically, it is modeled by Rician
fading as hk =

√
κ

κ+1hk,LoS +
√

1
κ+1hk,NLoS, where κ

denotes the Rician factor, hk,LoS = a(φk, θk, r̄k) is the
LoS channel with a(φk, θk, r̄k) being the array response
vector for the signal received from the kth source at the
anchor node. φk, θk, and r̄k denote the azimuth AoA,
elevation AoA, and range of the kth source with respect to
the reference antenna at the anchor node. Assuming that the
reference antenna is located at (0, 0, 0), the array response
vector for the kth source is given by

a(xk, yk, zk) =
[
1, . . . , ej

2π
λ (r̄k−rnk ), . . . , ej

2π
λ (r̄k−rNk )

]T

,

(2)
where λ is the wavelength and

rnk =

√
x2
k + (yk − nydy)

2
+ (zk − nzdz)

2 (3)

is the distance between the kth source and the nth antenna.
(xk, yk, zk) represents the coordinate of the kth source
with xk = r̄k cos(φk) cos(θk), yk = r̄k sin(φk) cos(θk),
zk = r̄k sin(θk) . Furthermore, ny ∈ {1, . . . , Ny} and nz ∈
{1, . . . , Nz} indicate the horizontal and vertical indices of
the nth antenna, and dy and dz are the inter-antenna spacing
in the respective dimensions. hk,NLoS ∈ CN represents the
NLoS component consisting of scattered multi-path channels
based on correlated Rayleigh fading, as described in [14].

III. MULTIPLE SIGNAL CLASSIFICATION

The covariance matrix of the received signal at the anchor
node is expressed as

R = E{x(t)xH(t)} = UDUH, (4)

where the term in the right-hand-side represents the eigen-
decomposition of R. The diagonal entries of D contain the
eigenvalues of the covariance matrix and the columns of U
correspond to unit-length eigenvectors. The MUSIC algo-
rithm utilizes the orthogonality between the signal and noise
subspaces of the received signal to estimate the location
of the sources. Specifically, we further decompose (4) into

its signal and noise subspaces as UDUH = UsDsU
H
s +

UnDnU
H
n, where the diagonal matrices Ds and Dn has

the K highest and N − K smallest eigenvalues of R on
their diagonal, and Us and Un contain the corresponding
eigenvectors. The MUSIC spectrum is defined as

S(φ, θ, r̄) =
1

aH(φ, θ, r̄)UnUH
na(φ, θ, r̄)

, (5)

and a 3D grid search is performed across the parameter
space to identify spectral peaks that correspond to the esti-
mated source locations in 3D space. This method would be
asymptotically optimal if the grid were continuous. However,
computing the MUSIC spectrum on a 3D grid presents a high
computational burden in practice and makes it challenging
to utilize the algorithm for real-time 3D localization appli-
cations.

In practice, the covariance matrix is estimated by averag-
ing over a finite number of snapshots as

R̂ =
1

T

T∑
t=1

x(t)xH(t). (6)

IV. MACHINE LEARNING-BASED NEAR-FIELD
LOCALIZATION

In this section, we present a convolutional neural
network (CNN)-based method for localizing near-field
sources. Specifically, we employ 2D-CNNs due to the two-
dimensional spatial structure of the input eigenvector ma-
trix. Unlike multilayer perceptrons or 1D-CNNs, 2D-CNNs
are more effective at capturing spatial dependencies while
requiring fewer parameters and offering greater accuracy.
The setup used for training and testing includes an anchor
node equipped with N = 128 antennas with Ny = 16 and
Nz = 8, and the inter-antenna spacing of dy = dz = λ/2,
where λ = 0.1m.

Fig. 1 shows the general block diagram of our proposed
approach. First, the covariance matrix is calculated based on
the received snapshots as in (6). The eigendecomposition is
then performed on the covariance matrix as R̂ = ÛD̂ÛH

and the matrix of eigenvectors Û is used as the input to the
CNN as in [12]. Each element of Û is a complex number.
To enable processing within a real-valued DL framework, we
decompose Û into its real and imaginary components, form-
ing a new representation: Xreal = ℜ(Û), Ximag = ℑ(Û). The
final input to the CNN is constructed as a multi-channel real-
valued tensor as

Xinput =

[
Xreal
Ximag

]
=

[
ℜ(Û)

ℑ(Û)

]
∈ R2×N×N . (7)

In the following, we first provide a detailed explanation of
the individual components of the model. Subsequently, we
describe the overall architecture and its design rationale.

A. Model Components

1) Convolutional Blocks: Convolutional blocks form the
feature extraction backbone of the model. Each block con-
sists of multiple convolutional layers with 3 × 3 kernels,
batch normalization, and ReLU activation functions. Let the
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Fig. 1: The general block diagram of the proposed approach.

input feature map at layer l be denoted as X(l), and the
convolutional operation be represented as

X(l+1) = ω
(

BN
(
W(l) ∗X(l) + b(l)

))
, (8)

where W(l) and b(l) are the weight and bias parameters, ∗
denotes the convolution operation, BN(·) represents batch
normalization, and ω(·) is the ReLU activation function.
Max-pooling layers are used in the initial blocks to reduce
spatial dimensions, while adaptive average pooling in the
final block ensures a fixed output size. The feature depth
increases progressively as 32 → 64 → 128 → 256, capturing
hierarchical patterns in the input data.

2) Batch Normalization: Batch normalization is applied
after each convolutional and fully connected layer to stan-
dardize the inputs, stabilize training, and accelerate conver-
gence. Given an input feature map X, batch normalization
is defined as

BN(X) = γ
X− µ√
σ2 + ϵ

+ β, (9)

where µ and σ2 are the batch mean and variance, γ and β
are learnable parameters, and ϵ is a small positive constant
for numerical stability.

3) Residual Connections: Residual connections are in-
corporated by stacking multiple convolutional layers within
each block. Given an input X(l), the residual mapping is
formulated as:

X(l+1) = X(l) + F(X(l),W(l)), (10)

where F(·) represents the residual function (typically a series
of convolutions, batch normalization, and activation layers).

4) Fully Connected Layers: The fully connected (FC)
layers process the flattened feature maps from the con-
volutional blocks. Let the input to the first FC layer be
z1. The FC layers progressively reduce dimensionality as
1024 → 512 → 256. Each layer transformation is defined as

zi+1 = ϕ (BN(Wizi + bi)) , (11)

where Wi and bi are the weight and bias parameters, ϕ
is the activation function, and dropout is applied to prevent
overfitting.

5) Output Layer: The final FC layer produces a 3K-
dimensional output vector q ∈ R3K , where 3K is the
number of target parameters - three parameters for the 3D
location of each of the K sources. It is given by

q = softmax(Wozf + bo), (12)

where Wo and bo are the parameters of the output layer,
and zf represents the output of the last FC layer before the
final output layer.

B. General Structure

Based on the above-mentioned components, our proposed
model is a CNN designed for regression tasks. It consists of
a sequence of convolutional blocks for hierarchical feature
extraction, followed by FC layers for prediction. Residual
connections are incorporated into the convolutional blocks
to improve gradient flow and enable deeper architectures.

1) Convolutional Blocks: The model consists of four
convolutional blocks, each designed to progressively extract
hierarchical features from the input data. The blocks share
a similar structure but differ in the number of filters and
the use of pooling operations. The general structure of each
block is as follows:

1. Convolutional Layers: Each block contains multiple
convolutional layers with 3 × 3 kernels, batch normaliza-
tion, and ReLU activation. The number of filters increases
progressively across the blocks:

• Block 1: 2 input channels → 32 filters.
• Block 2: 32 filters → 64 filters.
• Block 3: 64 filters → 128 filters.
• Block 4: 128 filters → 256 filters.

2. Pooling Operations:

• Blocks 1 and 2: A max-pooling layer with a 2×2 kernel
and stride 2 is applied to reduce spatial dimensions.

• Block 3: No pooling is applied; the block focuses on
feature extraction through convolutional layers.

• Block 4: An adaptive average pooling layer is used to
produce fixed-size feature maps.

3. Residual Connections: Residual connections are incor-
porated within the convolutional blocks by stacking multiple
convolutional layers. This ensures efficient gradient propa-
gation and enables the training of deeper architectures.

The operations in each block are summarized in Table I.
2) Fully Connected Layers: The output of the final con-

volutional block is flattened into a 1D vector and processed
through multiple FC layers. The FC layers are structured as
follows:

• FC1 reduces the dimensionality from the flattened input
size to 1024 neurons.

• FC2 reduces the dimensionality to 512 neurons.
• FC3 reduces the dimensionality to 256 neurons.

Each FC layer applies batch normalization, ReLU activa-
tion, and dropout for regularization. The final FC layer maps
the 256-dimensional features to an output vector of size 3K.
This output vector represents the model’s predictions, i.e.,
the 3D location of the K sources.
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TABLE I: Block Operations. Abbreviations: Conv2D (2D convolution), BN (batch normalization), ReLU (rectifier linear
unit), MaxPool (max-pooling), AAP (adaptive average pooling).

Block Operations
1, 2 Conv2D → BN → ReLU → Conv2D → BN → ReLU → MaxPool

3 Conv2D → BN → ReLU → Conv2D → BN → ReLU → Conv2D → BN → ReLU
4 Conv2D → BN → ReLU → Conv2D → BN → ReLU → Conv2D → BN → ReLU → AAP

V. RESULTS

In this section, we validate the effectiveness of the pro-
posed CNN-based localization algorithm by comparing it
with the 3D MUSIC algorithm. The goal is to localize
K = 3 sources located in the radiative near-field region
of the anchor node. The training and test datasets are
generated through random realizations of the sources’ lo-
cations. Specifically, for each sample in the datasets, the
azimuth AoAs, elevation AoAs, and ranges of the sources
are independently drawn from uniform distributions φk ∈
U [−π/3, π/3], θk ∈ U [−π/3, π/3], and r̄k ∈ U [2D, dFA/4].
Here, D is the array aperture length and 2D represents
the distance beyond which amplitude variations over the
array are negligible [15]. Furthermore, dFA = 2D2/λ is
the Fraunhofer array distance beyond which phase variations
over the array are also negligible. We assume that the
signal-to-noise ratio is 0 dB per antenna for all sources. The
details of the deep model are provided in Section IV and
the values of other hyperparameters are listed in Table II.
For the MUSIC algorithm, we used a grid size of 200 for
all three parameters (azimuth angle, elevation angle, and
range), which corresponds to a 0.6◦ step size for angles and a
1 cm step size for range. The 3D coordinates of the sources
are then found from the estimated AoAs and ranges. The
experiments were conducted on a laptop running Windows
11, equipped with a 13th Gen Intel® CoreTM i9-13900H
processor (2.60 GHz), 64 GB of RAM, and an NVIDIA
GeForce RTX 4090 Laptop GPU.

TABLE II: Hyperparameter values.

Hyperparameter Value

Learning rate 0.0001
Weight decay 0.01
Optimizer AdamW
Training size 20000
Dropout rate 0.3
Number of epochs 1200
Batch size 32
Loss function MSE

We first evaluate the root mean square error (RMSE) of the
location estimate for the proposed approach and the MUSIC
algorithm, which is calculated as

RMSE =√√√√ 1

3KL

K∑
k=1

L∑
l=1

(xk,t − x̂k,l)2 + (yk,l − ŷk,l)2 + (zk,l − ẑk,l)2,

(13)
where xk,l, yk,l, and zk,l represent the coordinates of the
kth source for the lth test sample, (̂·) indicates the estimated
value, and the size of the test set is L = 50.

25 50 75 100

0.08

0.09

0.1

0.11

0.12

Fig. 2: RMSE for the proposed approach and the MUSIC
algorithm as a function of the number of snapshots (T ).

Fig. 2 shows RMSE as a function of number of snapshots
for Rician factors κ = 4 and κ = 8. The RMSE improves
with the number of snapshots because with more snapshots,
the covariance matrix can be better estimated. Additionally,
the RMSE improves when increasing the Rician factor
because of the greater dominance of the LoS component
over multipath components. We can see that our proposed
approach outperforms the MUSIC algorithm in terms of
RMSE. This is because unlike MUSIC that scans across
predefined intervals to detect spectrum peaks, the CNN-
based approach predicts sources’ locations continuously
and directly, enabling finer resolution without relying on
quantized grids. Additionally, by learning directly from data
generated in multi-path environments, the proposed method
is better equipped to handle challenging NLoS conditions. In
contrast, MUSIC relies on the assumption that the received
signal matches the array response structure, which typically
holds only for the LoS component, leading to degraded
localization accuracy in the presence of NLoS paths. More
importantly, the computational complexity of the 3D MUSIC
algorithm is prohibitively high, thus further hindering its
application for real-time localization.

Fig. 3 depicts the localization results for 12 random re-
alizations, where the black stars show the exact locations,
red circles indicate the estimated locations via the proposed
approach, and blue squares correspond to the locations
obtained by MUSIC. In this simulation, the Rician factor is
set as κ = 4, and T = 25 snapshots are used. We can see that
our proposed approach achieves performance comparable
to or better than MUSIC in most cases while requiring
substantially less runtime once the network is trained, as
discussed below.

Table III shows the runtime for the proposed approach and
the MUSIC algorithm for different numbers of snapshots
when κ = 4. We can see that there is a notable difference
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Fig. 3: Exact and estimated locations for three sources over 12 random realizations.

TABLE III: 3D localization runtime of the proposed al-
gorithm and MUSIC algorithm for one test sample. The
numbers represent the runtime in seconds.

Method
Snapshots

T = 25 T = 50 T = 75 T = 100

Proposed algorithm 0.0004 0.0004 0.0004 0.0005
MUSIC algorithm 99 100 104 127

between the runtime of the proposed approach and the
MUSIC algorithm. For example, for T = 25, our method
achieves a runtime of just 0.0004 seconds, while it takes 99
seconds for MUSIC to run. This represents an improvement
of over 247000 times faster execution. Moreover, the runtime
of the MUSIC algorithm increases proportionally with the
number of snapshots, while our proposed approach maintains
an almost constant execution time. The main reason for
this observation is that MUSIC performs an exhaustive grid
search and evaluates the spatial spectrum at every grid
point, making it computationally intensive. In contrast, our
trained model performs localization through simple matrix
operations that have already been optimized during training,
achieving significantly lower computational complexity.

VI. CONCLUSIONS

This paper proposed a new algorithm for the 3D local-
ization of near-field sources with one anchor node using
CNN. The CNN is trained using the eigenvectors of the
covariance matrix to predict the 3D coordinates of near-
field sources. Simulation results show that the proposed
approach outperforms the MUSIC algorithm while requiring
less runtime, making it suitable for real-time localization
applications.
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