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Abstract—Future networks are expected to leverage joint
communication and sensing (JCS) enabled by advances such as
extremely large aperture arrays (ELAAs) and high-frequency
operations. These technologies introduce significant near-field
propagation effects, which can be exploited to enhance sensing
performance. This paper investigates velocity sensing through
Doppler analysis in bistatic radar systems. By leveraging ELAAs,
we demonstrate how velocity components can be accurately
estimated. Performance bounds are derived to quantify the influ-
ence of system parameters and bistatic geometries on Doppler-
based velocity estimation. The results highlight the advantages of
bistatic sensing with ELAAs, offering new insights to drive the
design and optimization of JCS for 6G networks.

I. INTRODUCTION

Integration of communication and sensing in a unified
framework, referred to as joint communication and sensing
JCS), is emerging as a key innovation in next-generation
wireless systems, particularly in the context of sixth generation
(6G) and beyond [1]-[3]. JCS enables systems to simultane-
ously perform communication and sensing tasks, thereby en-
hancing spectral efficiency and reducing hardware costs while
opening new advanced potential applications. Among these,
applications requiring precise motion tracking and decision-
making, such as autonomous driving, are rapidly gaining inter-
est [4], [5]. For this reason, the ability to accurately estimate
the velocity of passive moving objects, which is related to
the Doppler shift, represents an important requirement for
JCS systems. However, when considering far-field propagation
conditions, the estimation of target velocity components is
only possible in a multi-static or distributed radar configuration
due to the possibility of observing it from multiple directions,
at the cost of challenging synchronization issues and expensive
hardware. The work in [6] proposes a method for estimating
the velocity vector of a moving target using multiple radars
in a distributed monostatic radar system, while [7] derives the
Cramér-Rao lower bound (CRLB) on target velocity estimation
by considering a distributed multiple input multiple output
(MIMO) radar with widely dispersed antennas. Moreover, in
[8] methods for determining the instantaneous velocity vector
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of a target using a multi-static radar are presented. On the
other hand, in monostatic configurations, the Doppler shift
evaluation only enables the estimate of the radial velocity [9].
In [10], instead, authors consider a bistatic radar configuration
providing the CRLB for the velocity component along the
bistatic bisector, referred as radial velocity as well.

Nevertheless, recent work in [11] demonstrates the possi-
bility of accurately estimating the velocity considering both
the radial and transverse velocity components of a moving
target in a monostatic configuration exploiting the near-field
conditions that arise due to the adoption of extremely large
aperture arrays (ELAAs) [12]. In fact, when a large array
is adopted, each antenna element allows the Doppler shift
to be measured from different perspectives, thus enabling
the estimation of the different velocity components. In [13]
authors derived analytical performance bounds in terms of
CRLB for both velocity components in the single input
multiple output (SIMO) monostatic configuration. However,
monostatic radar suffers from self-interference and can provide
less spatial diversity compared to a bistatic configuration [14].
To the authors’ knowledge, there remains a lack of research
investigating the theoretical bounds on velocity components
estimation using ELAAs in the near field by considering a
bistatic radar configuration.

To fill this gap, this paper investigates the fundamental
performance limits of velocity estimation in bistatic radar sys-
tems employing antenna arrays. Specifically, we demonstrate
that by exploiting arrays—particularly ELAAs—in bistatic
radar systems, it is possible to estimate not only the radial
component of the target velocity, as in single-antenna bistatic
radars, but also the transverse component. We show that the
estimation accuracy of the transverse velocity improves as
the aperture of the array increases at the expense of a slight
deterioration of that of the radial component, leading to a
more precise determination of the full target velocity. This
advancement can significantly enhance the performance of
bistatic radar systems in target tracking and motion analysis.

II. SYSTEM MODEL

We consider a radar sensing a passive point target moving in
a two-dimensional scenario along a generic trajectory, using a
SIMO bistatic configuration, namely with a single transmitter
and K receiving antennas, possibly composing an ELAA, as
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Fig. 1. 2D bistatic scenario, considering a SIMO configuration with a single
transmitter and K antenna elements composing the receiving ELAA.

shown in Fig. 1. More specifically, a uniform linear deploy-
ment is considered. The antenna spacing is ¢ and, without
loss of generality, let us assume K to be odd. Accordingly,
the aperture of the array is defined as D, = (K — 1)d. The
reference system is placed on the central element of the receiv-
ing ELAA, which acts as reference antenna. We denote with
pr = [zT, yT]T the position of the single antenna transmitter,
while the k-th element of the receiving ELAA is located in
Pr = [z, k] |, with k = —(K —1)/2,..., (K — 1)/2. For
instance, if a horizontal array oriented along the z-axis is
employed, then xp, = kd and y, = 0, Vk. We assume a point
target in position p = [z,y] moving with velocity v. The
distance between the transmitter and the target is drp. The
distance between the target and the k-th receiving antenna
is dj; for further convenience, we denote with d = dj the
distance between the target and the reference antenna of the
ELAA. The straight line distance between the transmitter and
the receiver of length L is called baseline of the bistatic radar.
The angle 5 formed between the transmitter, the target, and
the receiver (i.e., the angle subtended at the target) is the so-
called bistatic angle [15]. Finally, the bistatic bisector is the
angle bisector of the bistatic angle S subtended at the target.

The JCS transmitter sends an orthogonal frequency-division
multiplexing (OFDM) signal of power Pr, spanning M sym-
bols and N subcarriers, so that P = Pr/N is the power
allocated at each subcarrier. The symbol time is Ty, and the
subcarrier spacing (SCS) is Af. The signal is modulated at
the carrier frequency f..

After cyclic prefix removal and FFT processing, the com-
plex low-pass version of the received signal can be written as
[16]

Tmnk = Ymn,k T Zm,n.k (D

— ‘/Pan,kum,ne_ﬂﬂf"ﬂ“ e12mVn kM Tsym + Zomk

form=0,1,...,M—-landn =0,1,..., N—1, where y, n i
is the useful part of the signal, while zy, .5 ~ N (0,07)

denotes the additive white Gaussian noise (AWGN). In addi-
tion, U,y is the data transmitted in the m-th OFDM symbol
and n-th subcarrier, o, j, is the path gain factor experienced
at the k-th receiving antenna, considering the n-th subcarrier,
fn=fc+ (n — %) Af is the frequency associated with the
n-th subcarrier, and 7, = @ is the propagation delay at the
k-th receiving antenna, where c is the speed of light. The term
vp,, denotes the Doppler shift at the n-th subcarrier and the
k-th receiving antenna. We consider a bandwidth small enough
to assume % < 1 and constant Doppler shift across the
subcarriers, thus Up,k = Uy, Vn. Considering a practical size of
the array and a target located at a distance larger than the array
aperture (i.e., d > D,) in a line-of-sight (LOS) dominated
near-field scenario, all antennas experience almost the same
path loss, thus we have o, , = a Vn, k. Moreover, considering
that the data are known at the receiver and used as pilots, we
can assume Umy,, = 1.

In this bistatic configuration, the k-th Doppler shift vy, at
the k-th receiving antenna is given by [10]

v, = Xv COS i, COS % 2)
where A = c¢/f. is the wavelength and v = ||v|| is the

magnitude of the velocity tangent to the trajectory in p. It is
possible to observe that the Doppler shift in (2) is a function
of two key parameters:

« the k-th bistatic angle [, relative to the k-th antenna, i.e.,
the angle formed between the transmitter, the target, and
the k-th receiver;

« the projection of the velocity along the k-th bistatic
bisector v cos v, being ~j, the angle between the velocity
and the k-th bistatic bisector (see Fig. 1).

Notice that as a large number of receiving antennas K is
assumed due to the adoption of an ELAA, the bistatic bisector
and the bistatic angle change for each antenna element.

The term v cos 7 denotes the magnitude of the projection of
the velocity along the bistatic bisector of the reference antenna.
This is usually referred to as radial velocity [10]. We denote
such a term with v,. The component orthogonal to this one,
i.e., the transverse velocity is denoted with v, (see Fig. 1).

III. PERFORMANCE BOUNDS FOR VELOCITY ESTIMATION

The goal of the receiver is to estimate the position p and
the velocity v = [v;,v;] of the target, on the basis of the
received signal in (1), i.e., from the M x N x K observations
along the different OFDM symbols, subcarriers and antennas.
In order to concentrate on the velocity performance bounds,
which is the focus of the paper, we assume the position of
the target is known at the receiver, having been previously
estimated together with the gain factor o of the signal path.
This is possible by exploiting the information coming from the
different subcarriers and/or the phase profile of the spherical
impinging wave at the receiving antennas by means of near-
field array processing techniques [17]. To this end, we want
to analyze the performance limits on the estimation of the
velocity components v, and vg.
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The performance of a generic unbiased estimator is lower-
bounded by the CRLB, which defines the lowest achievable
mean-squared error in estimating the intended parameters.
Starting from (1) and on the basis of the above assumptions,
T, is known and, as a consequence, the set of unknown
parameters of interest to be estimated for the CRLB analysis
is ® = {v;,v4}. The (4,7)-th element of the corresponding
Fisher information matrix (FIM) is [18]

.._3 8ym’n,k : aym,n,k
s = 53R 2 { 90, } { 00, ] - O

m,n,k

The corresponding CRLBs are obtained by inverting the FIM.
Having a 2 x 2 matrix, it holds

1 1
CRLB™) = —_ CRLB™) = ——_ 4
det J 7" det J """ @)

where J;; = [J]; j and detJ = Jy 0, Jyou, — Joy, -

In the following, we will revise the performance limits for
velocity estimation with a single-antenna receiver (classical
configuration), then extending the analysis to the case of
multiple antennas.

A. Single-antenna Case

Considering a classical single input single output (SISO)
bistatic configuration (i.e., K = 1), the Doppler shift in (2)
for kK = 0 becomes

2 Bo _ 2 p

vy = X’U COS 7Y COS ?O = er cos 3" 5

It is well-known that with a single-antenna receiver the ve-
locity estimation is feasible along the bistatic bisector only.
Thus, only the radial velocity can be estimated, and no infor-
mation concerning the velocity component along the direction
perpendicular to the bistatic bisector is retrieved [15]. As a

consequence, we have CRLB() = ']1; L where
2 aym n,0 * aym n,0
Jp. = =R e 2 . 6
T o2 {7;1 { O, v, ©
leading to
Jy, = 41 cos? g (7
with

272 M N SNR (M2 — 1)T2,,
I= (8)
32

determining the dependence on the signal parameters,
where we have defined the signal-to-noise ratio (SNR) as
SNR = Pa?/0?. It can be seen from (7)-(8) that the CRLB
decreases with the square of the signal duration 75, as
(M?* — 1)TZ2,, ~ TZ,. Moreover, an SNR gain equal to
M N is obtained, thanks to the multiple observations due to
the exploitation of A/ OFDM symbols and N subcarriers.
According to (7), the estimation is not possible along the
baseline, since S = 7 (no information on v, available). Such
a condition is often called forward scatter; in fact, here the
transmitter-to-target range variations are equal and opposite to
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Fig. 2. CRLB for radial velocity estimation considering a SISO bistatic
configuration. The white squares indicate the position of the transmitter and
the receiver.

the target-to-receiver range variations, resulting in an almost-
zero Doppler shift. Differently, the accuracy is maximum
where S = 0, i.e., in the so-called quasi-monostatic region.
The quasi-monostatic region of a bistatic radar is the area
where the bistatic geometry behaves almost like a monostatic
radar—meaning that the bistatic effects (such as large bistatic
angles and significant bistatic Doppler shifts) are minimal.
This can happen:

o if the transmitter and the receiver are close to each other
(or the target is far away), making the bistatic angle small;

« if the target is approximately on the same direction of the
baseline (x-axis according to Fig. 1), i.e., its extension
before the transmitter or after the receiver.

For reference, the CRLB is depicted in a 2D map in Fig. 2,
where the transmitter is located in pr = [—20,0]m and the
receiver in pp = [0,0]m." As expected, the estimation is
infeasible along the baseline of length L = 20 m.

B. Multiple Antennas Case

When an antenna array and in particular an ELAA is
employed, we should consider the expression in (2), as each
antenna element at the receiver sees a different bistatic angle.
Therefore, the antennas with indexes k& # 0 experience a
Doppler shift which depends also on the transverse compo-
nent of the velocity v;. For convenience, we express with
Urg = v oS Y the k-th radial component of the velocity in (2).
By introducing the angular deviation 1, between the target-
reference antenna direction (i.e., & = 0) and the target-k-th
antenna direction, according to Fig. 1, we have

Upg = U COS Yk = U COS ('y 5

_ i, . g
= €08 Yo €08 + vsinyg sin =~

Y . Y
zvrcos7+vtsm—.

2

IThe same simulation parameters detailed in the numerical results of
Sec. IV are considered.
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Substituting (9) and (2) in (1), the corresponding FIM elements
can be calculated as

Jopv, = 4[2(}05 k cos? % (10)
Jopvs 4[20082 B sin? % (11
k
1/% Yy,
1) vy T =41 o a 12
o Zcos — cos sin 5 (12)

with I defined in (8) and Sy = 8 — v, according to Fig. 1.

In order to get some simple insights into the behavior of
the accuracy of estimating the radial and transverse velocity
components, let us consider for simplicity a horizontal array
and a target at a distance larger than the array aperture (i.e.,
d > D,). Since we have cos % R cosg (small angles 1), by
exploiting the law of cosines (also known as Carnot theorem)
for the triangle formed by the reference antenna - target - k-th
antenna, that is d? +d; —2ddy, cos ¢, = 27, and trigonometric
properties, (10) can be rewritten as

Jo. 0.7 4 I cos® g z:cos2 % =271 cos? g Xk:(l + cos )

= 2]cos? g 1+ %—ﬁ (13)
B T d,
Considering, as first approximation, d = dj, we obtain
2
~ 2B Z Lk
J?)y?)r ~ I cos 5 - (4 - d2>
- 5 B (K? —1)62
= K1 cos 5 |:4_].2d2 (14)

Since (K2 —1)d% ~ D2 (i.e., square of the array aperture) and
that we are considering a target for which d > D,, the right-
hand term in the square bracket of (14) is much smaller than
4, so that the information on the radial velocity is practically
the same of the SISO case in (7) except for a linear SNR gain
K, which is expected since K independent observations are
combined to estimate the Doppler shift.

For what concerns the transverse velocity estimation, by
following the same procedure we have

Jogvy R 4T cos? g Zsin2 % = 27 cos? g ;(1 — costy)

d dk a:ﬁ
= 2 Jcos® E { —= ( F—E (15)
leading to
B »T 2 B (K* —1)8°
~ Icos’ = =KI —_
Jopvs cos” 5 2 cos” oo
2
a 2 é
K112d2 cos 5 (16)

Thus, as evident from the approximation in (16), the funda-
mental figure of merit driving the capability of estimating the

radial component is the aperture to distance ratio; in fact, the
estimation accuracy deteriorates for large distance of the target
from the receiving array, as the information scales inversally
with the square of the target-receiver distance d.

I'V. NUMERICAL RESULTS

The performance bounds on the velocity estimation are eval-
uated considering f. = 28 GHz, M = 14, Ty = 66.6 s,
N = 1200 subcarriers, and § = \/2. The transmitter is placed
at pr = [—20, 0] m, while the central element of the receiver is
at po = [0,0] m. A constant overall SNR over the K antennas
SNR;ot = K SNR = 10dB is considered. Thus, the difference
in performance is eventually obtained from the array geometry
(e.g., aperture); of course, actual CRLB results should be
scaled accordingly by a factor K. A horizontal deployment
along the x axis is considered for the receiving array.

Fig. 3 reports the 2D maps of the CRLB distribution
concerning the transversal velocity in a 30 x 30 m area where
the target is supposed to be placed. The results account for
the expression (4)-right computed starting from the FIM com-
ponents derived in (10)-(12) which depend on the geometry
of the system (position of the transmitter, receiving array, and
target) and on the signal parameters accounted by the term (8).
The figure is proposed with an increasing number of antennas,
e, K = 11, K = 101, and K = 501. As can be seen,
when the array is small, the information on the transverse
geometry is mostly unreliable in all the considered scenarios.
In fact, in this case, only the radial component of the velocity
can be estimated. Differently, as far as the aperture of the
array becomes significant, the accuracy of the estimation for
the transverse component drastically increases, especially if
the target is placed in proximity of the receiving array. The
accuracy of the estimation decreases when moving far away
from the array (see, e.g., Fig. 3b). In fact, the possibility of
collecting information on the transverse velocity derives from
the capability of projecting the target velocity along the set
of directions corresponding to the different antennas of the
array; when the target is far away, the array is seen practically
as a single point, thus estimation is not feasible. Moreover,
the performance deteriorates when the target is placed in a
direction close to the array deployment (e.g., in the quasi-
monostatic region). Here, in fact, the direction is the same
for all the antennas and corresponds to the radial direction, so
no further information becomes available rather than the radial
velocity. The 2D distribution of the transverse error around the
array is similar to that obtained in the monostatic case in [13];
however, here the transverse velocity is calculated with respect
to the bistatic bisector. It is interesting to remark that, looking
at Fig. 3, the distribution is not symmetric with respect to the
broadside direction of the array due to the bistatic geometry
where the transmitter is placed outside the array aperture.

It is important to note that, in this case, the orientation of the
receiving array can play a fundamental role. Successive work
will focus on a more comprehensive analysis of the impact of
the array geometry and orientation. Finally, it should be noted
that, in the considered simulations, the SNR was assumed a
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Fig. 3. 2D maps of the CRLB for transverse velocity estimation with antenna
arrays.

constant term. In a real scenario, the target position and its
radar cross section, implicitly included in o2, may play a
crucial role in the actual received power depending on the
geometry, thus affecting the CRLB distribution.

V. CONCLUSION

This paper has demonstrated that the use of ELAAs in
bistatic radar systems enables the estimation of both the radial
and transverse components of the target’s velocity, specifically
in the proximity of the array. This represents a significant
improvement over single-antenna bistatic radars, which are
limited to estimating only the radial velocity component
along the bistatic bisector. By deriving the CRLB, we have
characterized the theoretical accuracy of velocity estimation,
illustrating the impact of the array’s aperture. Approximated
expressions for large apertures permit to obtain simple design
guidelines. Numerical simulations showed the potential of
bistatic geometries, combined with large aperture arrays, to
enhance target motion estimation.

REFERENCES

[1] W. Tong and P. Zhu, 6G: The Next Horizon: From Connected People
and Things to Connected Intelligence. ~Cambridge University Press,
2021.

[2] M. FE. Keskin et al., “Fundamental trade-offs in monostatic ISAC: A
holistic investigation towards 6G,” IEEE Trans. Wireless Commun., pp.
1-1, Apr. 2025.

[3] N. Gonzilez-Prelcic et al., “The integrated sensing and communication
revolution for 6G: Vision, techniques, and applications,” Proceedings of
the IEEE, vol. 112, no. 7, pp. 676-723, July 2024.

[4] N. Decarli, A. Guerra, C. Giovannetti, F. Guidi, and B. M. Masini, “V2X
sidelink localization of connected automated vehicles,” IEEE J. Select.
Areas Commun., vol. 42, no. 1, pp. 120-133, Jan. 2024.

[5] E. Favarelli et al., “Sensor fusion and resource management in MIMO-
OFDM joint sensing and communication,” IEEE Trans. Veh. Technol.,
pp. 1-16, Feb. 2025.

[6] S.-G. Lee, J. Jung, and S.-C. Kim, “Enhanced velocity vector estimation
using distributed radar system,” in 2022 IEEE VTS Asia Pacific Wireless
Communications Symposium (APWCS), Aug. 2022, pp. 75-79.

[7] Q. He, R. S. Blum, H. Godrich, and A. M. Haimovich, “Cramer-
Rao bound for target velocity estimation in MIMO radar with widely
separated antennas,” in 2008 42nd Annual Conference on Information
Sciences and Systems, March 2008, pp. 123-127.

[8] M. Antoniou, H. Ma, A. Stove, and M. Cherniakov, “Target velocity es-
timation with multistatic GNSS-based radar,” in 2018 19th International
Radar Symposium (IRS), June 2018, pp. 1-7.

[9] M. A. Richards, Fundamentals of radar signal processing. McGraw-
Hill, 2005.

[10] M. S. Greco, P. Stinco, F. Gini, and A. Farina, “Cramer-Rao bounds and
selection of bistatic channels for multistatic radar systems,” IEEE Trans.
Aerosp. Electron. Syst., vol. 47, no. 4, pp. 2934-2948, Oct. 2011.

[11] Z. Wang, X. Mu, and Y. Liu, “Near-field velocity sensing and predictive
beamforming,” IEEE Trans. Veh. Technol., vol. 74, no. 1, pp. 1806-1810,
Jan. 2025.

[12] H. Chen et al., “6G localization and sensing in the near field: Features,
opportunities, and challenges,” IEEE Wireless Commun., vol. 31, no. 4,
pp. 260-267, Aug. 2024.

[13] C. Giovannetti, N. Decarli, and D. Dardari, “Performance bounds for
velocity estimation with extremely large aperture arrays,” IEEE Wireless
Communications Letters, vol. 13, no. 12, pp. 3513-3517, Dec. 2024.

[14] C. B. Barneto et al., “Full-duplex OFDM radar with LTE and 5G
NR waveforms: challenges, solutions, and measurements,” IEEE Trans.
Microwave Theory Tech., vol. 67, no. 10, pp. 4042-4054, Oct. 2019.

[15] N. J. Willis, Bistatic Radar, 2nd ed. The Institution of Engineering
and Technology, 2004.

[16] M. F. Keskin, V. Koivunen, and H. Wymeersch, “Limited feedforward
waveform design for OFDM dual-functional radar-communications,”
IEEE Trans. Signal Process., vol. 69, pp. 2955-2970, Apr. 2021.

[17] Z. Wang, P. Ramezani, Y. Liu, and E. Bjornson, “Near-field localization
and sensing with large-aperture arrays: From signal modeling to pro-
cessing,” IEEE Signal Processing Mag., vol. 42, no. 1, pp. 74-87, Jan.
2025.

[18] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory. Upper Saddle River, NJ: Prentice-Hall, 1993.

1138



