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Abstract—This paper examines the challenging task of visual
inspection on industrial pipelines. Key challenges in this area
include: ¢) highly noisy and cluttered pipeline background,
1) damage types are not known a-priori, ¢3:) high variability
in damage visual appearance, and iv) imbalanced distribution
of the training samples (images of damaged pipelines appear
less frequently than non-damaged). Therefore, visual Anomaly
Detection (AD) and Anomaly Localization (AL) are valid and
suitable methods to address such a task. This paper introduces
the Industrial Pipeline Dataset (IPD), that is mainly collected
from industrial facilities in Europe and focuses on damages to
insulated pipelines. Data collection and annotations was guided
by consultations with industry experts to ensure the accurate
identification of insulation damages. State-of-the-art AD and AL
methods were evaluated to establish a baseline for the inspection
task. Their rather mediocre performance, shown both visually
and empirically, showcases the complexity of the task. As such,
this paper makes two main contributions: ) IPD is, to the best
of our knowledge, the first publicly available AD/AL dataset
on visual inspection of industrial pipeline insulation, making it
highly valuable for real-world industrial applications, and i)
since modern AD/AL methods fail to perform well on IPD, it
constitutes a valuable research benchmark.

Index Terms—Anomaly Detection, Anomaly Localization,
Background Noise, Industrial Pipelines, Dataset

I. INTRODUCTION

Inspection of industrial pipelines in large facilities is usually
performed by examining the internal condition of the pipelines
using specialized tools (e.g., borescopes) [1]. These methods
perform remarkably well, but they have two serious disad-
vantages: ¢) requiring (parts of) the factory to be shut down,
which in the oil and gas industry may translate to reduction of
production capacity, resulting in financial repercussion during
the inspection day, and 7i) damages to the insulation cannot be
detected. In our research efforts, we consider methodologies to
inspect the pipeline and its insulation during normal operation.
As such, visual inspection from the outside of the pipeline is
usually the first option to be considered. In order to avoid
costs related to scaffolding and dangers related to worker
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exposure to high altitudes, drones are commonly used to
collect videos of the pipeline that are sent to an inspector.
Hence, video stream analysis can be automated by machine
learning methods that detect damage in pipeline insulation.

This work examines the visual insulation inspection au-
tomation problem from the perspectives of visual Anomaly
Detection (AD) & Localization (AL). We refer to AD as the
binary classification task at the image level, while we consider
AL to be the pixel-level classification task (or segmentation)
of the anomaly within the image [2]. In practice, a data
sample is considered anomalous if it does not conform to
some definition of normality [3]. For example, in image re-
construction approaches [4], normality is defined by selecting
an acceptable threshold for the Ly distance between the initial
and reconstructed images. In other approaches [5], normality
is defined by the probability of an image patch to belong to
the multivariate Gaussian probability distribution that is above
a chosen threshold.

AD and AL are actively being used in many important
applications (e.g., defect detection, quality control, medical
imaging) [6]. However, in the industrial domain, there is a se-
rious lack of publicly available AD/AL ground-truth data [7].
Even more so, when pixel-level annotations are needed. Two
well-established datasets for industrial AD/AL are MVTecAD
[8] and BTAD [6], where the images are captured in nearly
ideal conditions, with well-centered objects and practically no
background noise. VisA [9] is a slightly more complex dataset
that is also used as a benchmark. However, all these datasets
are still very simple, as several AD/AL approaches achieve a
near-perfect performance on them [10], [11].

This paper introduces the Industrial Pipeline Dataset (IPD!).
Unlike existing AD/AL datasets, IPD contains images of
insulated pipelines—mainly from industrial facilities located
in Europe—with high background noise and clutter, as well

IThe IPD dataset is available at: https://aiia.csd.auth.gr/ipd-dataset/
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as other challenging aspects that are presented in Section III.
We have employed state-of-the-art (SOTA) AD/AL methods,
showcasing their quite poor performance on IPD. Therefore,
the proposed dataset is a valuable research benchmark to help
advance the AD/AL SOTA even further.

The rest of the paper is structured as follows. Section II
presents well-established AD/AL datasets and algorithms that
have been evaluated in the proposed IPD dataset. Section III
thoroughly presents the IPD dataset and its feature distribution
compared to existing AD/AL benchmarks. Section IV presents
a detailed performance evaluation of several modern AD/AL
approaches on IPD and showcases the difficulty of the pro-
posed dataset. Finally, Section V summarizes the findings of
this paper and presents future work directions.

II. ANOMALY DETECTION AND LOCALIZATION

This section carries out a brief AD/AL literature review. In
the first subsection, three popular industrial AD/AL datasets,
typically used by unsupervised or semi-supervised approaches,
are presented. The second subsection, presents the AD/AL
algorithms—most of which are SOTA—that are evaluated on
the IPD dataset in Section IV.

A. Anomaly Detection and Localization Datasets

MVTecAD [8] is a very popular AD/AL dataset, consisting
of 15 classes with an average number of 357 images per
class. It mainly focuses on industrial inspection, with 10 object
classes (e.g., cable, screw, transistor), and 5 texture classes
(e.g., tile, wood). However, it is very simplistic, since all
objects are well centered and there is no background noise.

BTAD [6] is a similarly simple AD/AL benchmark that
comprises 3 classes with an average of 847 images per class.
Each class is an industrial product, though it’s not specified
exactly what it is.

VisA [9] is a bit more complicated compared to the above-
mentioned datasets in two main ways: ¢) multiple object
instances appear in a single image, and i) objects are not
always centered and may be located in various image parts.
The VisA dataset consists of 12 classes with an average of
902 images per class.

B. Anomaly Detection and Localization Methods

The methods that this paper evaluates on IPD are either
unsupervised or semi-supervised, meaning that they do not
learn from anomalous samples during training, unless they
synthetically construct such samples (semi-supervised learn-
ing, e.g., Draem [12]). According to a recent survey [7], cur-
rent industrial AD/AL research is split in two main categories:
1) feature-embedding based methods, and i) reconstruction
based methods. More specifically, in our paper we are testing
methods that belong in the following sub-categories: i)
Teacher-Student (T-S) architecture, ig) distribution map, i.,)
memory bank, and ii,,) autoencoder.

T-S methods: Following this taxonomy, let us begin with the
T-S architecture-based methods, and particularly STFPM [13].
The teacher DNN is a pre-trained residual network (ResNet),

and the Student DNN has the same architecture as the Teacher.
During training, non-anomalous images are given as input to
the Student DNN, while it learns to match the Teacher feature
maps at different levels. During testing, the multi-level feature
map difference of the two networks is used to determine
the anomaly score. In a similar fashion, Reverse Distillation
[14] adopts the T-S paradigm but with an interesting novelty.
Instead of the raw image, the Student network receives as input
the Teacher’s multiscale feature representation, projected in a
latent space, and learns to reconstruct it using normal samples.
The so called one-class bottleneck embedding (OCBE) mod-
ule, which projects the Teacher’s feature maps into the latent
space, is also trained along with the student network.
Distribution map methods: To move to approaches that are
based on distribution maps, in Rkde [15], Faster R-CNN is
used for region proposals [16], followed by AlexNet [17]
feature extraction. As a final step, Kernel Density Estimation
(KDE) is performed to model the normal features and detect
anomalies during inference. In DFM [18], the probability dis-
tribution of the features extracted by a pre-trained classification
DNN is modeled by: a Gaussian distribution, or a Gaussian
mixture model. This probability density function (pdf) model
is used to perform Out-Of-Distribution (OOD) detection at
inference time. More modern AD approaches incorporate Nor-
malizing Flows (NFs) [19]. In Cflow [20], image patches are
fed into a CNN feature extractor. The patch feature maps are
used for normal-sample distribution modeling. These feature
maps, along with the patch positional encodings are passed
as input in NF decoders that transform the feature probability
distribution into a Gaussian one. In a slightly different manner,
FastFlow [21] models the feature probability distribution by
a two-dimensional normal pdf. Uflow [22] employs a U-Net
architecture [23], where the multi-scale feature extractor acts
like the encoder, and a set of Normalizing Flows acts as the
decoder. Furthermore, each NF is trained to map the normal
image data to a Gaussian pdf. At inference time, anomaly maps
are created at each feature scale, and they get upsampled to
the original image size. Moreover, an estimate of the Number
of False Alarms (NFA) [24], is used to produce the final AL
mask. In CSflow [25], the input is processed at 3 scales in
parallel. Moreover, the vanilla NF is extended with a novel
cross-scale flow that allows feature maps of different sizes to
interact with each other during training and inference.
Memory bank methods: Moving to approaches that are based
on memory banks, in Padim [5], the input is indirectly split
into image patches, by considering the corresponding areas of
a pre-trained ResNet’s feature map. A Gaussian distribution is
created for each patch separately, by considering feature maps
at different ResNet levels. This patch-level pdf creation with
normal samples, which is stored in a memory bank, allows
for AL when an abnormal image is fed into the network.
In Patchcore [26], image patches are considered in a similar
fashion to Padim, by passing the images into a pre-trained
ResNet for feature extraction. The extracted features are sub-
sampled and stored in a memory bank. During inference, the
anomaly score for a test patch is calculated by performing
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a nearest neighbor search between the test sample features
and the features stored in the memory bank. In CFA [27],
the authors incorporate a patch descriptor and a memory
bank, to adapt the features to the target dataset. As such,
during training, they define a coupled-hypersphere, and during
inference, they examine whether a test sample is within the
constructed hypersphere (normal), or it is outside (abnormal).
Autoencoder methods: To conclude this section, we present
reconstruction-based approaches that use autoencoders. In Dsr
[28], an architecture based on a quantized feature space repre-
sentation is proposed. Moreover, a specific object appearance
and a general object appearance decoder are used in parallel
to reconstruct the input image. Finally, an anomaly detection
module combines the two reconstructions and an upsampling
module is used to produce the final AL mask. In Draem
[12], a semi-supervised approach is followed, using synthetic
anomaly creation. The proposed architecture incorporates a
reconstructive and a discriminative network used in sequence.
During training, each network is trained with a different loss
function. Finally, during testing, the discriminative network
that takes as input the concatenation of the initial and recon-
structed images, and produces the AL predicted mask.

III. IPD DATASET

In this section, the IPD dataset is presented in detail.
Moreover, we showcase descriptive statistics of IPD, and also
compare its DINOv2 extracted features with three other well-
established AD/AL benchmarks.

Data collection: The dataset was mainly collected from
industrial facilities in Europe, focusing on insulated that are
jacketed with metal. To increase the size of the dataset,
images with such pipelines were also captured from a public
facility. Data collection was guided by consultations with
industry experts to ensure the accurate identification of in-
sulation damages. Initially, the focus was on more visible
defects, such as i) open insulations and i) holes. However,
expert recommendations highlighted the importance of also
considering ii¢) dents in the insulation as potential indicators
of damage, as they may suggest a defect in others parts of the
pipeline. All damaged areas were labeled with a pixel value of
1, meaning that there is no distinction between damage types
in the annotations. A professional camera and two modern
smartphones were used to capture the images in 5 different
resolutions: i) 2353 x 4080 (9.6 MP), ii) 3000 x 4000 (12
MP), 4ii) 3060 x 4080 (12.5 MP), iv) 4000 x 6000 (24 MP),
v) 6120 x 8160 (49.9 MP).

Data pre-processing: To maintain the confidentiality of the
facilities, areas that could potentially reveal the identity of
specific plants removed from the dataset. Furthermore, to
increase the size of the dataset as well as the variance of image
resolutions, we performed some manual croppings, effectively
replacing large images with several smaller ones.

Quality assurance: To ensure that the quality of the anno-
tations is good, we did not only consult experts as mentioned
previously, but also made sure that 5 colleagues collaborate in
the annotation process. These colleagues worked together, peer

__IPD Dataset

Non-damaged Pipelines
Image Examples

Damaged Pipelines
Image Examples

Fig. 1: IPD image examples. First row depicts non-damaged pipeline images
(i.e., normal samples). Second row depicts damages pipeline images (i.e.,
abnormal samples), with pixel-level damage annotations (shown in red color).
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Fig. 2: IPD split for AD and AL tasks.

reviewed each other, and went over a few iterations of updating
the annotations to achieve the final IPD dataset AD and AL
ground-truth labels and masks respectively. Figure 1, illustrates
samples from the annotated IPD dataset, where the AL (pixel-
level) ground-truth masks are presented for damaged pipelines.

Dataset splits: The IPD dataset consists of 357 images that
contain insulated pipelines. As depicted in Figure 2, the train-
ing set consists of 112 normal images and an optional subset of
21 abnormal images, which can be used by supervised learning
approaches, but it must be omitted by unsupervised and semi-
supervised ones. Moreover, the validation and test sets both
consist of 56 normal and 56 abnormal images.

Dataset statistics and comparison with relevant AD/AL
benchmarks: Compared to current well-established AD/AL
benchmarks (e.g., MVTecAD, BTAD, VisA), IPD has the fol-
lowing challenging aspects: i) the pipeline (object) back-
ground is highly noisy and cluttered, i7) some pipelines (ob-
jects) take up a big portion of image pixels while others a tiny
portion, and #i7) there is a high variance of image resolutions
in the dataset. Figure 3, illustrates the resolution distribution
of images in IPD. Finally, Figure 4, shows the DINOv2 feature
distribution—after performing t-SNE [29]—of the IPD dataset
with respect to MVTecAD, BTAD, and VisA datasets (where
each point corresponds to a single image), highlighting that in
the IPD dataset image features exhibit greater variance. This
is attributed to the complexity of the dataset.

IV. EXPERIMENTS ON IPD DATASET

Implementation and metrics: Several unsupervised/semi-
supervised AD/AL algorithms—most of which constitute the
SOTA—were evaluated on IPD, using the anomalib framework
vl.1.1 [30]. All images were resized to 256x256 resolution.
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Fig. 3: IPD image resolution distribution.
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Fig. 4: AD/AL dataset DINOv2 feature visualization. (a) Three classes of
MVTecAD with respect to IPD. (b) All three classes of BTAD with respect
to IPD. (c) Three classes of VisA with respect to IPD.

The Recall, Precision, Accuracy, F1 Score, and AUROC
metrics were used for AD/AL evaluation. To conduct the
experiments in a more reliable manner, 5 different seeds were
used and the results were averaged to get the final performance
metric evaluations. The data split into training, validation, and
test sets remained unchanged throughout all experiments, and
it is the same as in the IPD dataset we are publishing. No fine-
tuning was performed, and the experiments were conducted
with the default method hyperparameters as defined in the
anomalib framework v1.1.1 [30], except for the number of
epochs, which was set to 100 where applicable.

Results and key findings: In Table I, the AD (image-level)
results are reported, while in Table II, the AL (pixel-level)
results are reported. As AUROC is considered to be the most
informative performance metric, the rows in both tables are
sorted in decreasing AUROC order. We use bold style to
denote the best performance with respect to each metric, and
underline style to denote the second-best performance. As a
main observation, we report the mediocre performance of even
the best AD/AL algorithms on the IPD dataset. This proves
our point, that more challenging datasets, like IPD, should
be published and used as benchmarks to enhance research in

the AD/AL domain. Moreover, it is observed that for the AD
task, the best 2 approaches (i.e., Dfin, Uflow) are based on
distributions maps. Regarding the AL task, we notice that
the best approach (i.e., Patchcore) is based on a memory
bank, and the second-best approach (i.e., Uflow) is based on
a distribution map. Moreover, Reverse Distillation, which is
based on a T-S architecture, achieves 37¢ place in both tasks.
These observations reveal the fact there is currently not a
single type of AD/AL approach that clearly outperforms the
others. Furthermore, in Figure 5, a few inference results of
the best-performing AL methods are visualized, highlighting
the inability of current SOTA methods to successfully detect
and localize anomalies on IPD, while they perform remarkably
well on the MVTecAD dataset.

TABLE I: AD Performance on IPD: image-level evaluation

‘ Algorithm H Family H AUROC ‘ Accuracy ‘ F1I Score H Precision ‘ Recall ‘
[ Dfn__ | Disributonmap || 0.816 | 0821 | 0836 | 0773 [ 0911 |
[ Uflow ][ Distribution map [ 0811 | 0759 | 0797 [ 0.690 [ 0943 ]
‘ pewense ‘ Teacher Student H 0.782 ‘ 0711 ‘ 0.752 H 0.658 ‘ 0.879 ‘
[ Patchcore ][ Memory bank [[ 0777 [ 0725 [ 0755 ] 0.681 [ 0.846 ]
STFPM Teacher-Sudent [ 754 0.684 0.737 0.645 | 0.879
architecture
Fastflow Distribution map 0.736 0.636 0.719 0.587 0.929
[ Draem ]| Autoencoder ][ 0718 | 0582 | 0.691 [ 0559 ] 0929 ]
[ Dsr [[ Autoencoder [[ 0.668 [ 0.641 [ 0723 [ 0599 [ 0.925 |
[ Padim ][ Memory bank [[ 0652 [ 0602 [ 0.695 ] 0564 [ 0.907 ]
[ Rkde || Distribution map || 0639 | 0518 | 0675 | 0500 | L000 |
[ Cfa_ || Memorybank || 0504 | 0514 | 0660 | 0508 | 0982 |
[ Coflow || Distribution map ]| 0544 | 0566 | 0.698 [ 055 | 0.968 |
[ Cflow ][ Distribution map [ 0341 | 0407 | 0548 [ 0441 [ 0732 ]
TABLE II: AL Performance on IPD: pixel-level evaluation
[ Algorithm ]| Family [[ AUROC | Accuracy | FI Score ]| Precision | Recall ]
[ Patchcore ]| Memory bank ][ 0798 | 0743 | 0470 [ 0360 [ 0.677 ]
[ Uflow ][ Distribution map [[ 0794 [ 0728 [ 0467 ] 0349 ] 0.709 ]
‘ pReverse ‘ Teacher Student H 0.780 ‘ 0715 ‘ 0.454 H 0.335 ‘ 0.705 ‘
‘ STFPM H Teacher-Student H 0.714 ‘ 0.682 ‘ 0.388 H 0.287 ‘ 0.598 ‘
architecture
[ Padim || Memory bank || 0711 | 0652 | 0391 | 0277 | 0664 |
[ Dpm__ || Distribution map | 0.706 | 0611 | 0401 [ 0270 [ 077 |
[ Fastlow || Distribution map || 0623 | 0551 | 0332 | 0222 | 0660 |
[ Rkde [[ Distribution map [| 0.601 [ 0537 [ 0343 [ 0225 [ 0.719 |
[ Clow || Distribution map || 0581 | 0578 | 0280 | 0.193 | 0498 |
[ Draem ][ Autoencoder [[ 0577 [ 0376 [ 0314 ] 0.196 ] 0.833 ]
[ Cyflow || Distribution map ]| 0550 | 0478 | 0302 || 0208 | 0.640 |
[ Dsr [ Autoencoder ][ 0469 [ 0.168 [ 0287 [ 0.168 T 0.999 ]
[ G || Memorybank || 0465 | 0284 [ 0294 [ 0.77 | 08%4 |

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the new IPD dataset which is,
to the best of our knowledge, the first public AD/AL dataset
comprising RGB images of insulated industrial pipelines.
Moreover, we evaluated modern AD/AL algorithms—most of
which are SOTA—on IPD, and verified both visually and by
using well-established metrics, such as AUROC, that there is
ample room for AD/AL algorithm improvement. As such, IPD
constitutes a challenging and useful benchmark for the AD/AL
tasks. Moreover, it is very useful for the improvement of
automation in industrial applications. Regarding future work,
we intend to: ¢) perform a baseline evaluation by using IPD as
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Fig. 5: IPD inference examples using: (a) Patchcore, (b) Uflow, and (c)
Reverse Distillation. The methods can detect and localize damages very well
on MVTecAD samples, while they clearly struggle on the IPD dataset.

an object detection dataset, where the objects are the damages,
1) annotate the pipelines of IPD and perform a pipeline
semantic segmentation baseline evaluation, and ii) increase
the size of the IPD dataset.
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