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Abstract—Autonomous agents play a crucial role in various
modern fields, including emergency response and urban secu-
rity. Their ability to operate effectively without direct human
supervision is essential, especially in high-stakes situations. A key
challenge is enabling these agents to evaluate their proficiency in
completing tasks and use this evaluation for informed decision-
making. This paper explores the use of a metric based on the
assessment of autonomous agents’ proficiency and applies it to
improve their decision-making at run time. In this context, pro-
ficiency self-assessment will improve agent navigation, enabling
agents to more effectively complete their mission tasks, such as
reaching a destination area and enhancing estimation accuracy.

I. INTRODUCTION

The deployment of autonomous agents in critical applica-
tions such as emergency response, urban security, and environ-
mental monitoring has increased significantly in recent years
[1]–[4]. These agents, i.e., unmanned aerial vehicles (UAVs)
or mobile robots, must operate in complex and dynamic envi-
ronments with minimal human supervision where the ability
to make timely and effective decisions becomes crucial for
mission success. However, a significant challenge in multi-
agent networks lies in ensuring that each agent can self-assess
its own proficiency in completing tasks and use it to make
more informed and adaptive decisions [5]–[8].

Traditional decision-making frameworks in autonomous
systems often assume that all agents have homogeneous ca-
pabilities, following predefined strategies or learned policies
without assessing their proficiency in completing a given task
[9]. Indeed, the existing approaches typically rely on static
decision models, which do not account for the varying levels
of expertise and uncertainty that arise from differences in
sensing accuracy, computational resources, and environmental
conditions [10].

This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE00000001 - program
“RESTART”), under the NRPP of NextGenerationEU (Mision 4 – Component
2 -Investment 1.1) Prin 2022 (No. 104, 2/2/2022, CUP J53C24002790006),
under ERC Grant no. 101116257 (project CUE-GO: Contextual Radio Cues
for Enhancing Decision Making in Networks of Autonomous Agents), and the
National Science Foundation under Awards 2212506, 1845833 and 2326559.

We can categorize self-assessment methods into three cat-
egories [6]. The knowledge-based category relies on human
expertise in human-agent interactions [8]. The learning-based
category uses machine learning like classifiers [11]. Lastly,
the test-based category applies probabilistic and statistical
methods [12]. Here, we focus on the test-based approach,
where proficiency assessment is rooted in probabilistic model-
ing and Bayesian estimation techniques. Using these statistical
methods, agents can quantify the uncertainty associated with
their models and refine their decision-making accordingly.

This paper presents a proficiency-driven decision-making
framework that enables autonomous agents to evaluate their
proficiency and dynamically select the most suitable observa-
tion model to improve navigation and estimate the position
of a moving source. In this regard, we consider a Bayesian
proficiency metric inspired by the Cramér-Rao Lower Bound
(CRLB), enabling agents to assess the accuracy of their avail-
able observation models and select the most suitable one for
real-time decision-making. Additionally, to mitigate the impact
of measurement noise, we propose a team-based strategy
in which agents coordinate their decisions and collectively
adopt a common observation model, enhancing overall system
performance.

II. SYSTEM MODEL

We consider a reference scenario in which a source moves
within an area A, as shown in Fig. 1, and its position and
velocity are estimated in real time by a team of autonomous
agents.

The source state at time step k is denoted by s
(k)
s =

[p
(k)
s , ṗ

(k)
s ] ∈ R4 and includes position and velocity informa-

tion. We assume that the positions of the agents are known due
to the availability of global navigation satellite system (GNSS)
information [9], [13], and, at each time instant, they can be
written as p

(k)
i = p

(k−1)
i + u

(k)
i where i ∈ T = {1, . . . , N},

with T being the set of agents and N its cardinality, p(k)
i ∈ R2

the position of the i-th agent, and u
(k)
i ∈ R2 its navigation

command input [10], [14]. Such a command is found as the
solution to a navigation problem that will be described in
Sec. IV.
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Fig. 1. Example of the considered scenario with four agents (UAVs in green)
navigating towards a source area, denoted with A.

Each agent is equipped with a library of statistical models
Li = {M1,M2, . . . ,Mm . . . ,MNM}, with NM being the
number of available models, which includes the generative
model used to simulate the true source trajectory and its
corresponding observations. In the next, we assume Li =
L, ∀i ∈ T .

For each agent, the models are defined by two probability
density functions (pdfs)

Mm :
{
p
(
s(k)s |s(k−1)

s ;Mm,s

)
, p
(
z
(k)
i |s(k)s ;Mm,z

)}
, (1)

where p
(
s
(k)
s |s(k−1)

s ;Mm,s

)
is the state transition pdf, and

p
(
z
(k)
i |s(k)s ;Mm,z

)
is the observation pdf with z

(k)
i represent-

ing the observations available at the i-th agent at time instant
k. From (1), we observe that Mm = {Mm,s,Mm,z}. Within
a Bayesian framework, typically Bayesian filters are adopted
to efficiently combine prior information given the transition
model with the measurement model to track the state of the
source s

(k)
s [13]. The choice of the models is essential for

accurate source localization. We now describe the transition
and observation models.

Regarding the transition model, the motion of the source at
time k is modeled as

s(k)s = fk

(
s(k−1)
s

)
+w(k)

s , (2)

where fk(·) is the transition function and w
(k)
s is the transition

noise process.
Each agent collects a measurement vector that contains

ranging (i.e., z
(k)
i,r ) and bearing (i.e., z

(k)
i,α ) measurements

(z(k)i =
[
z
(k)
i,r , z

(k)
i,α

]
∈ R2), with

z
(k)
i,r = d

(k)
i + b

(k)
i + v

(k)
i,r , z

(k)
i,α = a

(k)
i + v

(k)
i,α , (3)

where the true distance and angle between the i-
th agent and the source are, respectively, d

(k)
i =

d
(
p
(k)
i ,p

(k)
s

)
=
∥∥p(k)

s − p
(k)
i

∥∥ and a
(k)
i = a

(
p
(k)
i ,p

(k)
s

)
=

arctan
(
y
(k)
s − y

(k)
i , x

(k)
s − x

(k)
i

)
. The ranging bias b

(k)
i =

b
(
p
(k)
i ,p

(k)
s

)
accounts for line-of-sight (LOS)/non-line-of-

sight (NLOS) propagation between the source and the i-th
agent [15]. The ranging noise, denoted with v

(k)
i,r , is drawn

from a zero-mean Gaussian distribution with variance(
σ
(k)
i,r

)2
= σ2

r

(
d
(k)
i /dref

)β
, (4)

where β is the path-loss exponent and σ2
r is the ranging vari-

ance measured at the reference distance of one meter (denoted

by dref) [16]. The bearing noise is v
(k)
i,α ∼ N

(
0,
(
σ
(k)
i,α

)2)
.

For simplicity, we assume that the team moves in a compact
formation without significant spatial extension with respect to
obstacles, such that all the agents consider the same ranging
bias model. Moreover, we assume mild NLOS propagation
effects, allowing for the assumption of a Gaussian distribution
[15], [17], [18]. Specifically, the ranging bias follows a Gaus-

sian distribution with mean µ
(k)
b and variance

(
σ
(k)
b

)2
. The

LOS locations are characterized by µb = 0 and, typically, by
small values of the variance σ2

b , whereas the NLOS locations
by µb > 0 and larger values of σ2

b . It is worth mentioning that
the presence of unknown bias in range measurements is the
main source of significant errors in localization systems [16].

In the next section, we introduce the concept of model
proficiency and describe how it can be quantified and used
to support decision making.

III. PROFICIENCY IN MULTI-AGENT NETWORKS

We now introduce the concept of self-proficiency inspired
by the definition of the CRLB applied to the distribution used
to predict the measurements [5]. Here, proficiency is intended
as a metric that quantifies an agent’s ability to complete a
given task (e.g., estimating the state of the source) using its
model to predict measurements. Once each agent evaluates its
proficiency, it can collaborate with others to derive the optimal
navigation control.

We start by defining the measurement prediction bound
(MPB) of a model Mm for the i-th agent at time k as [5]

P(k)
i

(
Mm|z(1:k)i

)
=E

−∂2 ln p
(
z
(k)
i |z(1:k−1)

i ;Mm

)
∂z

(k)
i ∂

(
z
(k)
i

)T
, (5)

where the statistical expectation E [·] is computed according
to the predictive distribution of the observations, that is,
p
(
z
(k)
i |z(1:k−1)

i ;Mm

)
. We can claim that [5], [19]

P(k)
i

(
Mm|z(1:k)i

)
≥
(
E[(ẑ(k)i − z

(k)
i )T (ẑ

(k)
i − z

(k)
i )]

)−1

, (6)

where the MPB represents the lower bound on the covariance
matrix of the measurement prediction error.
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To derive the MPB for the state-space model in (2)-(3) and
considering the use of an extended Kalman filter (EKF)1, we
recall that the state covariance matrix is given by

P
(k|k)
i = P

(k|k−1)
i −K

(k)
i S

(k|k−1)
i

(
K

(k)
i

)T
, (7)

with P
(k|k−1)
i being the covariance matrix of the predicted

state, K
(k)
i being the Kalman gain and S

(k|k−1)
i being the

innovation covariance matrix, which depends on the agent’s
position p

(k)
i , and it is given by [15]

S
(k|k−1)
i

(
p
(k)
i

)
=J

(k|k−1)
i P

(k|k−1)
i

(
J
(k|k−1)
i

)T
+R

(k)
i , (8)

where R
(k)
i is the noise covariance matrix, using the model

Mm. The Jacobian matrix J
(k|k−1)
i ≜ Ji

(
p̂
(k|k−1)
s;i ;p

(k)
i

)
relates the measurements to the coordinates of the state and
is evaluated at the predicted state estimate, i.e., p̂(k|k−1)

s;i . The
elements of the Jacobian are reported in Appendix A.

Consequently, the MPB becomes [5]

P(k)
i

(
Mm|z(1:k)i

)
=
(
S
(k|k−1)
i

)−1

. (9)

Subsequently, we introduce a metric that measures the
agreement between the MPB and the mean squared error
(MSE) (or squared error (SE) in the case of a single mea-
surement) in measurement prediction.

For each measurement component ξ ∈ {r, α}, we define the
proficiency discrepancy as

η
(k)
i,ξ (Mm) =

∣∣∣∣[P(k)
i (Mm | z(1:k)i )

]−1

ξ,ξ
−
(
z
(k)
i,ξ − ẑ

(k)
i,ξ

)2∣∣∣∣[
P(k)

i (Mm | z(1:k)i )
]−1

ξ,ξ
(10)

where [·]ξ,ξ selects the diagonal entry associated with modality
ξ ∈ {r, α}, i.e., position (1, 1) for r, and (2, 2) for α.

Equation (10) expresses the relative deviation between the
model-implied uncertainty (via the inverse of the MPB) and
the squared prediction error for each modality ξ. This normal-
ized metric allows each agent to assess how well model Mm

explains its current observations. The total proficiency score
aggregates range and bearing discrepancies as

η
(k)
i,MPB(Mm) = η

(k)
i,r (Mm) + η

(k)
i,α(Mm). (11)

In the following, we show how proficiency can be effec-
tively leveraged to enhance navigation and, consequently, the
state estimation.

IV. PROFICIENCY-DRIVEN NAVIGATION

Based on the concept of proficiency, each agent performs
the following steps to derive its navigation command.
P1: Each agent, independently from the others, identifies the

model that minimizes the discrepancy between its MPB
and the squared error.

1The EKF is chosen because of its balance of computational efficiency and
estimation accuracy in nonlinear systems.

P2: Based on a consensus strategy achieved by sharing their
identified models, the agents agree on a model to be used
by everyone.

P3: According to the chosen model, the agent infers the
control to approach the source area A, and that minimizes
the uncertainty of the source location.

For P1, the i-th agent identifies the most proficient model as

P1 : M̂(k)
m;i = arg min

Mm∈L

{
η
(k)
i,MPB(Mm) ; Mm ∈ L

}
. (12)

Then, in P2, each agent shares with the network its identified
model M̂(k)

m;i, and a simple solution is to select the model
M̂(k)

m identified by the majority of agents. Finally, for P3, the
i-th agent estimates its control signal as u

(k+1)
i = p̂

(k+1)
i −

p
(k)
i , where p̂

(k+1)
i is found as the solution of P3:

P3 : p̂
(k+1)
i = arg min

p
(k+1)
i

C
(
p
(k+1)
i ; p̂

(k+1|k)
s;i

)
, (13)

with p̂
(k+1|k)
s;i being the predicted state according to the chosen

model M̂(k)
m . The cost function in (13) is defined as [9], [10]

C(k+1)
i = C

(
p
(k+1)
i ; p̂

(k+1|k)
s,i

)
= (14)

= ωg fg

(
p
(k+1)
i ; p̂

(k+1|k)
s;i

)
︸ ︷︷ ︸

goal approaching

+ωp fp

(
p
(k+1)
i ; p̂

(k+1|k)
s;i

)
︸ ︷︷ ︸

information seeking

where ωg and ωp are empirically determined weights. The
two functions composing the cost function relate to the source
approach and prediction accuracy goals, and they are defined
as

fg

(
p
(k+1)
i ; p̂

(k+1|k)
s;i

)
=
∥∥∥p̄(k+1) − p̂

(k+1|k)
s;i

∥∥∥2 (15)

fp

(
p
(k+1)
i ; p̂

(k+1|k)
s;i

)
= tr

([
P

(k+1|k+1)
i

]
1:2,1:2

)
. (16)

The vector p̄(k) denotes the position centroid of the network
and it is given by p̄(k) = (1/N)

∑
i p

(k)
i . Moreover, we will

consider the following constraints:

∥p(k+1)
i − p

(k)
i ∥ ≤ vmax ·∆t, ∀i ∈ T (17)

dmin ≤ ∥p(k+1)
i − p

(k+1)
j ∥ ≤ dmax, ∀i, j ∈ T , i ̸= j, (18)

where vmax is the maximum allowed velocity, dmin and dmax

define the acceptable inter-agent spacing. Finally, the solution
of (13) for the i-th agent can be found as

p̂
(k+1)
i =− νMi ∇p

(k+1)
i

C(k+1)
i −Ni(N

T
i Ni)

−1c, (19)

where ν represents the spatial step. The projection matrix is
denoted with Mi = I −Ni

(
NT

i Ni

)−1
NT

i with I being the
identity matrix and Ni =

(
∇

p
(k+1)
i

cTi

)
being the gradient of

the active constraints in ci =
[
cTi,1 cTi,2 cTi,3

]T
, where

ci,1 = dv − dV, dV =
{
∆ d

(k)
i : ∆ d

(k)
i ≥ dv

}
, (20)

ci,2 = dm − dmin, dm =
{
d
(k)
ij : d

(k)
ij ≤ dmin

}
, (21)

ci,3 = dmax − dM, dM =
{
d
(k)
ij : d

(k)
ij ≥ dmax

}
, (22)
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Fig. 2. Example of a simulated scenario (see its description in the text).

where ∆ d
(k)
i = ∥p(k+1)

i − p
(k)
i ∥, d(k)ij = ||p(k+1)

j − p
(k+1)
i ||,

and dv = vmax · ∆t. The computations are reported in
Appendix B.

In the following, we evaluate the performance of the pro-
posed proficiency-driven navigation framework.

V. RESULTS

a) Simulation Parameters: We considered a scenario
with four agents, initially in the positions indicated by the
black circled markers in Fig. 2. Each agent has access to a
library of two models, i.e., Li = {M1, M2}, where these
models correspond to the observation model for LOS and
NLOS conditions, respectively, and are defined as Mm =

Mm,z : θm,z =
{
µ
(m)
b , σ

(m)
b

}
, m = 1, 2. The true generative

model depends on the actual LOS/NLOS link between each
agent and the source, as per Fig. 2. In our simulations,
we set M1,z : θ1,z =

{
µ
(1)
b , σ

(1)
b

}
=
{
0, 10−3

}
m to

generate LOS ranging biases, while for NLOS biases, we
used M2,z : θ2,z =

{
µ
(2)
b , σ

(2)
b

}
= {40, 1} m. As depicted

in Fig. 2, the grey square represents an NLOS area of
50×50m2. The source is initially positioned at [100, 100]m,
marked by the red dot in Fig. 2, and its motion is generated
according to the transition model in [9, Eq. 40], with a
time step ∆t = 1 s and process noise covariance matrix
W = diag(wx, wy) = diag(0.1, 2.5) · 10−3. In Fig. 2, the
estimated source positions are represented by circled markers,
with each marker’s color indicating the agent responsible for
the estimate. For the model in (4), we considered σr = 1m
and σα = 1deg and, for source tracking, we employed
an EKF, initialized as p̂

(0|0)
s;i = p

(0)
s and with an initial

covariance matrix P(0|0) = diag
(
202 · I2×2, 10

2 · I2×2

)
. We

considered K = 150 discrete time instants and NMC = 100
Monte Carlo runs. Regarding navigation, we set the weights
as ωg = 1 and ωp = 1, the spatial step ν = 5, and the
minimum and maximum inter-agent distances to dmin = 2m
and dmax = 100m, respectively. The maximum velocity was
set to vmax = 1m/step.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

Time, k

R
M

SE
(m

)

Perfect M
Proficiency & Coop.
Only Self-Proficiency
Fixed M1 - LOS
Fixed M2 - NLOS

LOSNLOSLOS

Fig. 3. RMSE on source position as a function of time and considering
different navigation approaches.

b) Results: In Fig. 3, we compare five different con-
figurations. The benchmark, i.e., Perfect M (red solid line
with square markers), where each agent has perfect knowledge
of the model generating the measurements, i.e., the correct
LOS or NLOS model is selected at each time instant based
on the actual channel condition. Then, in the proficiency-
driven navigation with cooperation, i.e., Proficiency & Coop.
(black solid line with triangle markers), we assumed that each
agent follows the three-step approach presented in Sec. IV,
where the agreement is made by picking the model selected
by the majority of agents. Based on this selection, navigation
commands are derived using the analytical solution of (13).
Then, for the Only Self-Proficiency approach (black dashed
line), we consider the previous case but without a network
consensus on the chosen model. Finally, in the Fixed Mm

approach (blue lines), the agents use a fixed model (either
LOS or NLOS), regardless of proficiency or actual channel
conditions. Fig 3 illustrates the team root mean squared error
(RMSE) on the source position estimation error for the dif-
ferent approaches. In particular, proficiency-driven navigation
with a cooperative approach exhibits a trend similar to that
of the benchmarks. This is because the agents can correctly
identify the model by exploiting the proficiency, whereas
cooperation allows them to discard wrong self-assessment
caused by noisy measurements. In fact, when cooperation is
absent, some agents may misidentify the model, leading to
larger errors. As expected, the worst performance is observed
in the Fixed Mm approach. For instance, considering the
blue solid line (corresponding to the M1/LOS model), the
RMSE is low when the agents operate in LOS conditions (i.e.,
before time step 30 and after time step 100), but significantly
deteriorates in the NLOS area.
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VI. CONCLUSIONS

This paper introduced a proficiency-driven decision-making
framework for networks of autonomous agents, enabling them
to self-assess their proficiency for improving navigation and
the position estimation of a moving source. Using a Bayesian-
based proficiency metric, the agents were able to evaluate
the reliability of their observation models and select the most
suitable one for real-time decision making. Simulation results
demonstrated that proficiency-driven navigation, especially
when combined with cooperative model selection, significantly
improves localization accuracy compared to traditional ap-
proaches employing fixed models.

APPENDIX A
Considering the measurement model in (3) and a 2D sce-

nario, the elements of the Jacobian can be written as[
J
(k|k−1)
i

]
1,1

=
∆x̂

(k)
i

d̂
(k)
i

,
[
J
(k|k−1)
i

]
1,2

=
∆ŷ

(k)
i

d̂
(k)
i

,[
J(k|k−1)

]
1,3

=
[
J(k|k−1)

]
1,4

= 0,[
J
(k|k−1)
i

]
2,1

= − ∆ŷ
(k)
i(

d̂
(k)
i

)2 , [
J
(k|k−1)
i

]
2,2

=
∆x̂

(k)
i(

d̂
(k)
i

)2 ,
[
J(k|k−1)

]
2,3

=
[
J(k|k−1)

]
2,4

= 0, (23)

with ∆x̂
(k)
i = x̂

(k|k−1)
s;i − x

(k)
i , ∆ŷ

(k)
i = ŷ

(k|k−1)
s;i − y

(k)
i , and

d̂
(k)
i =

√
(∆x̂

(k)
i )2 + (∆ŷ

(k)
i )2.

APPENDIX B
To sketch a closed-form solution of (13), we simplify the

notation by omitting the temporal index and focusing solely
on the x-coordinate, as the computations for the y-coordinate
are similar. The first derivative of the cost function taken with
respect to the x-coordinate of the i-th agent is

Dx = ωg
∂ fg(pi)

∂xi
+ ωp

∂fp(pi)

∂xi
. (24)

The first addend of Dx can be written as

∂ fg(pi)

∂xi
=

(1/N)
∑

i (xi − x̂s;i)

N
. (25)

For the second, we consider the approach in [10] and take the
information form as

Y
(k+1|k+1)
i =

(
P

(k+1|k+1)
i

)−1

= Y
(k+1|k)
i + I

(k+1)
i , (26)

where Y
(k+1|k)
i is independent of the current position, and

I
(k+1)
i =

(
J
(k+1|k)
i

)T (
R

(k+1))
i

)−1

J
(k+1|k)
i (27)

is the expression of the snapshot CRB. Considering the deriva-
tive chain rule ∂A−1 = −A−1 ∂AA−1 and the trace property
tr(AB) = tr(BA), we have [10]

∂fp(pi)

∂xi
=

∂ tr
(
Y−1

i

)
∂xi

= − tr

(
Y−1

i

∂Yi

∂xi
Y−1

i

)
. (28)

In the next, we assume that the noise covariance matrix Ri

is independent from the agent’s position. By denoting with
Ci =

[
(Ji(pi))

T
R−1

i Ji(pi)
]
, we can write

∂

∂xi
[Ci]11 =

2∆x̂i ∆ŷ2i

d̂4i

[
2

σ2
i,α d̂2i

− 1

σ2
i,r

]
, (29)

∂

∂xi
[C]22 =

2∆x̂i

d̂4i

(
∆ŷ2i
σ2
i,r

+
∆x̂2

i −∆ŷ2i

σ2
i,α d̂2i

)
, (30)

∂

∂xi
[Ci]12 =

∆ŷi

d̂4i

[
∆x̂2

i −∆ŷ2i
σ2
i,r

− 3∆x̂2
i −∆ŷ2i

σ2
i,α d̂2i

]
. (31)
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