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Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
used for surveillance, inspection, and autonomous exploration.
However, ensuring precise trajectory mapping remains challeng-
ing due to sensor noise and environmental uncertainty. This work
introduces a novel approach to UAV trajectory analysis that
integrates adaptive filtering with sequential clustering techniques.
Using a 3D synthetic dataset, we project it onto 2D planes and
apply the proposed steps to obtain final 2D clusters (i.e., our
vocabulary) for each plane. Knowing the model that generated
our data, we assume the data follow 3D Gaussian PDFs, which
remain Gaussian when projected onto 2D planes. This allows us
to compare the data-driven clusters with model-based ground-
truth clusters on each 2D plane. Preliminary results show that
our data-driven clusters effectively approximate the model-driven
ones in the 2D space. This research advances UAV trajectory
analysis in scenarios where only 2D data can be processed. It also
provides insights into the effectiveness of different 2D projections,
evaluating whether some perform better than others and how well
they approximate a 3D model. Future work will focus on fusing
2D clusters from different planes into a 3D model and comparing
it with the 3D ground-truth model.

Index Terms—Artificial Intelligence (AI), Cognitive Comput-
ing, Generative Models, Machine Learning (ML), Self-Aware
Autonomous Navigation

I. INTRODUCTION

In recent years, various papers in the literature have high-
lighted the importance of embodied perception as a basis for
self-awareness in intelligent agents. These agents are indeed
equipped with both proprioceptive and exteroceptive sensors,
allowing them to sense their own state and the surroundings for
developing self-awareness and adaptive capabilities [1]-[3]. In
this context, Unmanned Aerial Vehicles (UAVs) have become
an essential component in various applications, ranging from
surveillance and environmental monitoring to autonomous
navigation and logistics. The increasing complexity of UAV
operations demands robust trajectory analysis techniques that
enhance precision, adaptability, and real-time decision-making
capabilities. Traditional trajectory analysis methods often rely
on predefined motion models, which may struggle to adapt to
dynamic environments and unforeseen disturbances.
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To address this, federated learning frameworks have been
proposed, enabling UAVs to collaboratively update trajectory
models while mitigating data heterogeneity issues [4]. In
addition, the fusion of Al and defense technologies has demon-
strated significant improvements in UAV situational awareness
and decision-making, leveraging real-time data processing for
enhanced autonomous operations [5], [6].

To further improve UAV trajectory analysis, generative
models have been explored, offering adaptive learning through
reinforcement learning and Bayesian inference. Extended re-
ality (XR) simulations, combined with Al, have been em-
ployed to construct realistic trajectory models, facilitating
predictive analysis and training scenarios [7], [8]. Meanwhile,
breakthroughs in Al architectures, such as eliminating matrix
multiplications in large-scale models, promise computational
efficiency, paving the way for real-time UAV trajectory learn-
ing [9].

Furthermore, clustering techniques play a critical role in
extracting meaningful motion patterns from UAV trajectory
data. Dynamic Bayesian models, which are widely used for
predicting time-series data, have been adapted to UAV mo-
tion forecasting by capturing sequential dependencies and
decision-making processes [6], [9]. Additionally, cloud-edge-
end federated learning has been utilized to aggregate multi-
agent UAV trajectories, improving robustness in real-world
deployments [8], [9]. These recent contributions [10]—[12]
align with our research objectives by leveraging clustering
techniques, hierarchical Bayesian modeling, and generative
trajectory representations to enhance UAV navigation and self-
awareness [13].

With this research, we employ a novel adaptive filtering
followed by a two-stage clustering technique to improve state
estimation and refine trajectory predictions, thereby enhancing
3D UAV trajectory modeling. Clustering is performed sequen-
tially and operates on the hidden generalized state variables of
the filter, identifying regions in the data (including positions
and velocities) with similar characteristics. Each cluster acts
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as a switching variable, associated with a different dynamic
model in distinct regions of the state space.

By combining these approaches, we aim indeed to de-
velop a comprehensive framework that strengthens UAV self-
awareness and decision-making in complex operational envi-
ronments. This investigative exploration focuses on generating
and analyzing 3D trajectories. Furthermore, we also explore
the integration of multi-plane trajectory decomposition, where
individual 2D projections are analyzed and could then be used
to reconstruct a 3D representation.

The key contributions of this work are as follows:

o We advance UAV trajectory analysis by introducing an
advanced approach that integrates adaptive filtering with
sequential clustering techniques.

e We develop a methodology for projecting 3D data onto
2D planes, enabling the generation of 2D clusters (data-
driven clusters) for each plane and comparison with
ground-truth clusters derived from the 3D model (model-
driven clusters).

o We evaluate the fidelity of 2D projections in represent-
ing 3D motion by comparing cluster formations from
projected data with ground-truth clusters using Kullback-
Leibler Divergence (KLD).

II. METHODOLOGY

The block scheme of our approach is depicted in Fig. 1.
The following subsections detail each individual block.

A. 3D trajectory generation and its projection onto 2D planes

The 3D trajectory generation and projection onto the indi-
vidual 2D planes process began with simulating UAV move-
ments in 3D space using a dynamic model, incorporating
Gaussian probability density functions (PDFs) to account
for environmental uncertainties and sensor noise. These 3D
trajectories were projected onto XY, XZ, and YZ planes,
maintaining Gaussian consistency during projection.

B. Filtering

We are now considering the noisy 2D odometric observa-
tions obtained by projecting 3D noisy observations coming
from an expert agent. A null force filter [1] is used to obtain
a set of probabilistic errors called generalized state (GS)
describing deviations from the null force assumption. A GS
gs¢ can be represented as a vector:

gst = [Xt7Yt7Vact7Vyt]~ (1)

The state changes v,, and v,, correspond to the estimated
velocity resulting from local forces in our environment that
are not considered in the null force filtering process.

C. Clustering

The application of unsupervised clustering to the temporal
sequence of GSs seeks to develop a simplified generative
model with minimal parameters, enabling the prediction of
new data sequences that adhere to the same principles and
forces that shaped the expert-generated instance. Indeed, each

gs¢ can be modeled as a normal (or Gaussian) random variable
with a certain mean u; € R* and a covariance matrix
C; € R***. The clustering step consists of two distinct stages.

1) First-stage clustering: First-level clustering mainly aims
at providing an initial clustering of GSs based on the free
energy minimization principle. It is a sequential clustering
approach producing a series of discrete random variables
that represent clusters. Each cluster group is generated by
considering similar deviations from the null force hypoth-
esis, forming structured random data useful for generative
model learning. The initial clustering process ensures that
GSs from different local forces have a low probability of
being aggregated while minimizing false alarms. The sequence
is processed sequentially, deciding at each step whether to
create a new cluster or merge with an existing one. This
process functions as a discrete filter or Hidden Markov Model
(HMM), where merging decisions are based on free energy
minimization.

2) Second-stage clustering: After the first-stage cluster-
ing, a second phase prunes noise-associated Gaussian modes
(single-element clusters) and refines cluster grouping through
hierarchical clustering. A merging technique based on KLD
minimization at a lower spatial scale is applied, thus ensuring
cluster alignment. Small clusters are merged if sufficiently
aligned, maintaining accurate trajectory representation. This
iterative approach will eventually result in a Gaussian Mixture
Model (GMM), where each cluster is represented by mean
position, velocity, and transition probabilities. The final model
allows efficient UAV trajectory prediction and adaptation in
dynamic environments, which is the focus of our case.

D. 3D modeling and projection on 2D planes

We describe the formulation for enhancing UAV trajectory
analysis by integrating 3D modeling techniques and their
corresponding projections onto 2D planes.

In our scenario, we assume a drone trajectory starting from
(0,0,0) in the (x,y, z) plane, flying up to a certain elevation
and making a rectangular movement (see Fig. 2.a). These
movement is generated using a dynamic model, considering
a unit of time, which can be defined as:

Tiy1 100 A 0 O Tt
Tet1 01 00 A O Yt
Zgr | OO0 1 0 0 A 2t
b | o0 0 1 o0 of]a| T 2)
Ytt1 000 0 1 0 i
o 000 0 0 1) \5

where /A represents the sampling period, v; ~ N(0,Q) the
noise, and () the covariance matrix.

The objective of this trajectory could be, as an example, to
examine a warehouse or a ship for inspection purposes. To
enable a UAV to design its own trajectory according to the
elevation of the warehouse, or the entity being inspected, it
needs to generate a dynamical model that relates the internal
commands to external odometry or GPS information. To
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Model Generation
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Fig. 1: The block diagram of our system.

predict the 3D coordinates from the prediction model in (2),
an observation model, or a projection model, is used:
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where w41 ~ N(0, R), with covariance matrix R.

We consider both the dynamic (2) and observation (3) mod-
els as a ground-truth trajectory generator of 3D trajectories.
From this ground-truth 3D model, we can project it to obtain
2D ground-truth models. Finally, we compare the 2D clusters
obtained from the two-stage clustering described above (data-
driven clusters) with the 2D ground-truth models (model-
driven clusters).

To compare the results, we employ the Kullback—Leibler
Divergence (KLD) to measure the similarity between these
Gaussian distributions.Re-projecting the 3D model onto 2D
planes offers both computational efficiency and improved pre-
cision. Moreover, by considering each 2D plane combination,
it is possible to reconstruct the original 3D information. It is
self-explanatory that the changes in each plane can be modeled
in 2D by projecting the (x,y, z) plane onto (x,¥), (z,2), and
(y, z) planes, providing a comprehensive combined view.

E. Comparative 2D Projection Analysis

To evaluate the fidelity of 2D projections in representing the
original 3D motion, we compare cluster formations obtained
from the projected data with ground-truth clusters derived from

the 3D model. Given that each 2D projection retains Gaussian
characteristics, we utilize KLD to quantify the discrepancy
between projected and original distributions:

Dk (F||G) = ZF(w)logéEii 4)

where F' represents the projected data distribution, and G
denotes the ground-truth 3D distribution projected onto the
same 2D plane. This comparative analysis provides insights
into the effectiveness of different 2D projections, guiding
optimal feature selection for UAV trajectory modeling and
incremental learning purposes.

III. RESULTS

In our research exploration, we consider the six 3D el-
lipsoids representing our model-driven clusters (see Fig. 2.b)
and we project them onto the 2D planes (XY, XZ, YZ), thus
incorporating their associated directions to represent forces
and velocities.

Figure 3 highlights the alignment between the data-driven
clusters and the ground-truth clusters for each 2D plane (XY,
XZ, YZ). These findings demonstrate that the 2D projections
effectively captured the underlying 3D motion patterns, with
minimal divergence from the ground-truth model. The com-
parative analysis revealed that certain 2D planes (e.g., XY)
provided better approximations of the motion compared to
others, as evidenced by lower KLD values (see Fig. 4). This
suggests that the choice of 2D projection can significantly
impact the overall accuracy of trajectory modeling and recon-
struction. In addition, by re-projecting the clusters, we could
obtain a computational advantage in achieving better precision.
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(d) Generative model for the XY plane.

(e) Generative model for the XZ plane.

(f) Generative model for the YZ plane.

Fig. 3: (a-c) The data model for each plane represents our model-driven clusters. (d-f) The different colors represent the
different formations obtained from the projected data with ground-truth clusters derived from the 3D model.

Along with that, by taking each 2D plane combinations from
the clusters, it is also very much possible to reconstruct
back the 3D information, which is our main goal and one
of the key directions for future work. The proposed frame-
work successfully integrates adaptive filtering and sequential
clustering to improve UAV trajectory analysis. 2D projections
provide a reliable approximation of 3D motion, with certain
planes offering higher fidelity than others. The use of KLD
as a metric for evaluating projection fidelity offers valuable
insights for optimizing 2D feature selection in UAV trajectory
modeling. In further detail, the six clusters in Fig. 4 represent
the ground-truth models, numbered 1 to 6 and distinguished by

different colors. As an example, in Fig. 4(a) the data-driven
clusters correspond to 31 predictors, used as x-axis labels.
The KLD, shown on the y-axis, measures how closely the
distributions of the ground-truth models align with the data-
driven models. Since we are using sequential clustering, the
first five consecutive clusters are predictable from cluster 1.
This is evident in Fig. 4(a), for the XY projection of cluster 1
and the first five data-driven clusters. Moreover, since the
drone flight starts and ends at the same position, the first
cluster and the sixth cluster overlap. Cluster 2 shows higher
KLD values among the first five clusters compared to cluster 1,
but reaches its minimum at the sixth cluster in the data-driven
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Fig. 4: (a) KLD divergence for the XY plane. (b) KLD divergence for the XZ plane. (c) KLD divergence for the YZ plane

models. Cluster 3 exhibits minimum KLD values from data-
driven clusters 7 to 11, indicating a good approximation in the
corresponding positions. Cluster 4 shows its minimum KLD
at data-driven cluster 12. Cluster 5 has its minimum KLD
between clusters 13 and 18. Finally, from cluster 18 to 31,
cluster 6 displays the lowest KLD values.

Generalizing the approach to more complex and non-linear
paths requires a more complex vocabulary, with more clusters
and dynamic models, to achieve a reasonable approximation.
This increases computational complexity, mainly due to larger
transition matrices. While hierarchical extensions of the pro-
posed DBNs may mitigate this, their investigation lies beyond
the scope of this study.

IV. CONCLUSIONS

This research work presents a UAV trajectory modeling
framework that integrates generative models, adaptive filtering,
and sequential clustering. By analyzing 3D trajectories through
their 2D projections, we demonstrate the potential for accurate
motion representation and reconstruction. The results confirm
that certain 2D projections can effectively approximate 3D
motion, supporting more efficient and interpretable trajectory
analysis. Future work will focus on fusing multi-plane infor-
mation into a unified 3D model using hierarchical Bayesian
approaches to further enhance UAV autonomy and learning in
complex environments.
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