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Abstract—Intelligent Fault Detection (IFD) has garnered signif-
icant attention, with recent advances in AI-empowered predictive
maintenance. A key challenge in applying IFD models lies in
the interpretability of the methods, since the mechanisms are
typically complex and difficult to integrate with data-driven
approaches. In addition, the integration of edge devices is an
emerging trend, which ensures fault detection and subsequent
decision making on the edge, and thus offering an instant
response as compared to a conventional centralized server-based
architecture. However, to realize Edge-based IFD the primary
constraints are low storage capacity and limited computational
resources. In this paper, we address various critical challenges
in automatic Edge-based IFD for motors in industrial settings,
focusing on three key constraints, i.e., (a) limited availability of
training data, (b) the lack of method interpretability, and (c)
the computational and storage limitations of edge devices. To
overcome these challenges, we propose a suite of light weight
Physics-Informed (PI) AI algorithms to achieve Edge-based IFD
- without compromising detection performance. We validate our
proposed methods on experimental data for motor fault detection,
and additionally present results from the implementation of these
methods on an edge device. We discuss the benefits of our
proposed solutions, and give directions for future work.

Index Terms—Fault detection, Condition monitoring, Electric
motor, Machine learning, Edge AI

I. INTRODUCTION

Intelligent Fault Detection (IFD) has recently gained in-
creased attention due to the limitations of manual maintenance,
where a delay in defect identification can lead to signifi-
cant system failures and unexpected operational costs. Hence,
IFD techniques are widely explored for industrial machines
and systems failures, such as in the field of automotive
manufacturing, wind turbine generators, robotics and power
infrastructure [1]. IoT applications, including unmanned fault
detection, typically rely on edge devices that are capable
of analyzing data and making decisions locally. Thanks to
the growing capabilities, declining costs, and miniaturization
of electronic hardware, the deployment of IFD models on
low-end microcontrollers is now commercially feasible [2].
Embedded computing platforms, such as FPGA [3], Raspberry
[4] and Arduino [5] are commercially available to be applied
in scale under industrial scenarios for a variety of challenges
[6].

Unlike model-based fault detection approaches, which rely
on mathematical models of system behavior [7], data-driven
approaches use training data to capture relationships between
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inputs and outputs, and deep models for high-level feature
representation [1]. End-to-end deep models directly learn
relationships from the raw data, and achieve high detection
accuracy by bypassing intermediate feature engineering steps
and discovering best features needed during training [8].
However, this high accuracy and flexibility comes at the
cost of computational efficiency. In the scope of Edge-based
IFD, deep models are not the first choice due to the limited
computational resources and storage capacity.

In contrast, shallow classification models are relatively
lightweight, but require significantly more pre-processing of
collected data. Feature engineering is a crucial pre-processing
step to reduce the overall computational complexity and im-
prove the accuracy of detection [9]. Digital signal processing
(DSP) including Fourier Transform (FT) [10], Short-Time
Fourier Transform (STFT) [11], and Signal Imaging [12]
play an important role in time-frequency domain analysis
and general feature extraction. Transforming data into dif-
ferent domains reveals hidden characteristics that may be
obscured in the time domain. With the engineered features,
shallow machine learning algorithms can be applied to classify
faults. For example, Support Vector Machines (SVMs) are
widely used in fault detection and diagnosis due to their
effectiveness in handling high-dimensional data and complex
decision boundaries [13]. As an example, Edge2Train is a
novel framework designed to enable microcontrollers to train
SVM models locally with real implementation experiments
[14]. Another recent work detects open-circuit faults and
remains the safety of three-phase Pulse-width Modulation
(PWM) rectifier using the Random Forests (RF) algorithm [3].
Comparative evaluation shows that RF tends to outperforms
SVM and CNNs methods, and is typically employed on a
FPGA controller [3]. A simplified CNN is designed to mitigate
overfitting by integrating variations in motor speed [15]. For
simplicity and efficiency, Extreme Learning Machine (ELM)
is used for classifying faults with features extracted from
vibration signals (CWRU) [9].

To address the trade-off of accuracy and efficiency, phys-
ical knowledge of the system can be integrated into the
framework. In [16], the vibration signals are demodulated via
the Hilbert transform, and their spectra are used to select
characteristic sub-bands for bearing faults. These sub-bands
serve as engineered features for classification. The authors
in [17] propose a Physics-Informed CNN (PICNN), which
integrates a novel feature weighting layer into the CNN. The
bearing fault characteristic frequencies are embedded through
the constraints of the distribution of attention parameters.
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Fig. 1: Our proposed Physics-informed data processing and
model deployment pipeline

Although existing Physics-Informed (PI) methods address
bearing faults [16], [17], several challenges and opportunities
remain. Current approaches mainly focus on vibration signals,
yet torque and current signatures also provide valuable in-
sights. Most existing research targets bearing faults, leaving
other issues less explored. This work specifically addresses
commutation angle errors, including the exploration for edge
application. Future research can extend to other fault types and
broader applications.

In this paper, we aim to present a low-cost Physics-Informed
(PI) data processing framework for Edge-based IFD, with
a focus on motor commutation angle error detection. Our
objectives are as follows:

• We present frequency-domain insights of motor com-
mutation angle error through data mining. We further
leverage the known electrical frequency and sidebands of
the motor to guide PI feature selection, which enhances
the interpretability of the proposed IFD framework.

• Second, we propose a suite of motor fault detection meth-
ods, which are adaptations of diverse Machine Learning
models for resource-constrained hardware, and we pro-
vide a detailed evaluation of the proposed methods for
motor fault identification.

• Third, to validate the proposed method and demonstrate
its effectiveness, we design a test bench experiment to
collect a dataset from a motor operating under both
nominal and faulty working conditions. We then deploy
the trained models on a microcontroller board for real-
time fault detection evaluation.

The rest of the paper is organized as follows. Section II

introduces experimental design, proposed feature extraction
and engineering, and classification models. Section III presents
results and analyses. Section IV concludes this paper.

II. METHODOLOGIES

In this work, we aim to provide a solution for light-
weight motor fault detection without sacrificing the detection
performance. Figure 1 shows the overall workflow of our
proposed framework, which consists of data collection, data
mining, physics-informed feature selection, model training and
hardware implementation for real-world deployment. In this
section, we discuss (a) test bench data collection, (b) prepro-
cessing techniques, (c) integration of characteristic frequencies
in feature engineering, and (d) multiple classifiers.

A. Experimental design

Our test bench consists of a ECI 63.40 K4 brushless
servomotor from EBM-Papst, which is equipped with sensors
to collect current, torque, and rotational speed signals at a
sampling rate fs of 20 kHz. The motor has 4 pole pairs
(pz), and operates at a speed of n = 4000 rpm to deliver
a torque T = 670 mNm. A commutation angle error is
typically caused by misalignment of the Hall sensors leading
to a rotational offset of φ∆ (in electrical degrees, ◦el2). A
failure occurs if the offset between the actual and expected
sensor positions deviates from 30◦el2. This error typically
results in a semi-optimal operating point, which can lead to
abnormal behaviors such as increased torque ripples, unstable
phase currents, and elevated electrical stress. There are a equal
number of M = 2000 measurements from both nominal
and faulty working conditions, making the total dataset size
4000. For both nominal and faulty conditions, each type of
measurement contains 2L = 408 samples, where L denotes
half of the number of samples in each measurement.

B. Preprocessing & feature extraction

For M measurements collected under nominal condition,
Discrete Fourier Transform (DFT) is applied to each of them,
and the positive frequencies of resulting complex signals are
collected into columns of matrix XN ∈ CL×M , where N
denotes the nominal working condition. Then, for the DFT
result of each measurement, only the magnitude spectra is
preserved, which gives matrix |XN| ∈ RL×M . Finally, the
average over M magnitude spectra is calculated and collected
in vector xN ∈ RL. Similarly, the positive-frequency DFT
results of measurements under faulty condition and their
magnitude spectra can be collected into matrix XF ∈ CL×M

and |XF| ∈ RL×M , respectively. Then, the average over the
magnitude spectra is xF ∈ RL. In Figure 2a, examples of the
magnitude spectra for measurements from nominal and faulty
working condition, respectively, are visualized. The salient
peaks around the electrical frequency, i.e., fe = n·pz

60 , and
side-peak frequencies can be observed.

Figure 2b annotates the peaks in the averaged signal spectra
over the transformed measurements under nominal and faulty
working conditions. The first peak is the motor electrical
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Fig. 2: Plots of (a) frequency-domain torque signals and (b)
averaged signal spectra under nominal and faulty working
conditions

frequency, which in our case, is fe = n·pz

60 = 266.67 Hz.
Since the experimental rotational speed is not always at 4000
RPM, the corresponding frequency is not exactly 266.67 Hz as
expected. The other peaks are caused by the sample-and-hold
operation. Observe the sidebands around the center frequency:
fc = fs

α , where fs is the sampling frequency and α is the
number of samples per operation, which is 7 in our case. The
side peaks can be expressed as fp = kfc ± f0, k = 1, 2, 3,
where f0 is the fundamental frequency of input torque signals.
These peaks remain consistent across measurements.

C. Physics-informed feature engineering

Given the frequency-domain representation of the signals
and key frequency bins analyzed in II-B, the feature engineer-
ing process targets on selecting the most informative features
for fault detection. The proposed feature engineering algorithm
is outlined in Algorithm 1. The algorithm takes the averaged
magnitude spectra xN and xF to locate the characteristic
frequency bins. The z-scores zN ∈ RL and zF ∈ RL of xN and
xF are then computed for each frequency index, after which
we can obtain a vector d ∈ RL collecting their differences.
Features are selected based on the difference exceeding a
certain predefined threshold τ , which is adapted based on the
data and the need for reducing computational complexity. The
algorithm finally outputs the selected feature indices set, which
is denoted by S.

Require: Averaged magnitude spectrum for nominal xN and
faulty xF working conditions, threshold τ , electrical
frequency fe and sidebands fp = kfc ± f0, k = 1, 2, 3

Ensure: Feature indices S = ∅
1: Identify key frequency bins: Define set B of frequency

bins around fe and expected sidebands fp
2: for each i ∈ B do
3: Compute the z-score zN[i] and zF[i] of xN[i] and

xF[i] respectively, using class-specific statistics (mean
µi and standard deviation σi)

4: Compute the difference d[i] = |zF[i]− zN[i]|,∀i ∈ B
5: end for
6: Selected feature indices: S ← {i ∈ B : d[i] ≥ τ}
7: return S

Algorithm 1: Feature selection for motor fault identifica-
tion

Figure 3 shows the t-sne visualization of the original sam-
ples, frequency-domain features, PI features, and MLP pro-
cessed PI-features [18] under both nominal and faulty working
conditions. Although spectrum-based analysis is widely used
for vibration signals in motor fault detection, it remains
under-explored for torque-based motor IFD. As seen here,
the frequency-domain features exhibit a significant overlap
between the two classes. In contrast, the proposed PI feature
selection identifies the most relevant frequency components,
resulting in a far clearer class separation and thus demon-
strating the effectiveness of the proposed feature selection
technique. Additionally, by reducing feature dimensionality,
this approach saves both memory and computational resources.
Moreover, the last plot of MLP processed PI-features shows
that a fully connected neural network can further refine PI
features to learn more robust patterns for fault detection.

D. Classification models

Given PI feature indices set S, only the rows indexed are
selected, as matrix XS . Denoting i-th feature vector as XS,i,
the training dataset of size m for this binary classification
problem is written as D = {(XS,i, yi)}mi=1 , XS,i ∈ R|S|, yi =
f(XS,i) ∈ {0, 1}, where m is the total number of training
samples after splitting the dataset and f(·) is the labeling
function that maps each feature vector XS,i to a binary label.
In inference phase, trained models map the input feature XS,i

to discrete class label ŷi, predicting the condition of the motor.
In this work, we have multiple practical constraints, i.e., low-
dimensional features for highly constrained on-device memory
and computation, and real-time prediction requirement. Under
these conditions, shallow ML models such as Decision Tree
(DT), Random Forest (RF), and Gradient Boosting (GB), Sup-
port Vector Machine (SVM) and a Multiple Layer Perceptron
(MLP) model are well-suited [18]. Specifically, a compact
MLP strikes a balance between capturing high-level patterns
from low-dimensional data and avoiding heavy memory or
computational overhead of a deep architecture. These methods
are briefly summarized below.
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Fig. 3: T-sne visualizations of (a) original samples, (b) orig-
inal frequency-domain features, (c) proposed PI features and
(d) MLP processed features under both nominal and faulty
working conditions

Decision Tree (DT): DTs recursively split the input space to
partition data into classes. Given the training set D, the split-
ting structure is usually decided by information gain, which
is defined as IG(D,F) = Entropy(D) −∑

v∈Values(F)
|Dv|
|D| ·

Entropy(Dv), where F is the feature set, Dv is the subset of
D that has value v from feature set F , and Entropy(D) =
−∑

c∈Classes p(c) log p(c) is the entropy of the dataset D.
Random Forest (RF): RF extends decision trees by con-

structing an ensemble of nT trees, each trained on a ran-
dom subset of the training data. Given an input vector
x ∈ XS , the t-th tree produces a prediction ht(x). The
final prediction is the majority vote of the individual trees:
ŷ = mode ({ht(x)}nT

t=1).
Gradient Boosting (GB): GB model is trained in a stage-

wise manner. The model at stage m + 1 is updated as
Fm+1(x) = Fm(x) + ηhm(x), which is a combination of
the current model Fm(x) and the newly fitted tree hm(x) that
approximates the residual error of the loss function with η to
be the learning rate.

Support Vector Machine (SVM): SVM classifier finds
the hyperplane that best separates classes in feature space.
For a linear SVM, the hyperplane is found by solving the
optimization problem: minw,b

1
2∥w∥2 subject to y(wTx+b) ≥

1,∀x ∈ XS , where w is the weight vector and b is the bias.
Multiple Layer Perceptron (MLP): For an MLP with one

hidden layer, given a feature vector x ∈ XS , the output of the
hidden layer is computed as h = σ(W1x+b1), where W1 is
the weight matrix, b1 is the bias vector, and σ is the activation

Fig. 4: Picture of our Arduino board in a circuit

function, e.g., ReLu or sigmoid. The output of the network is
computed via the softmax function as ŷ = softmax(W2h +
b2). The parameters are learned through back-propagation by
minimizing a loss function, e.g., cross-entropy loss.

III. EXPERIMENTS

In this section, we introduce the edge device specifications,
on which we migrate trained models to conduct real-time
fault detection. We apply the proposed PI feature engineering
solution on the test-bench data for evaluation.

Hardware specifications: The hardware used is Arduino
Nano 33 BLE Sense. The board is powered by a 64 MHz
Arm Cortex-M4F processor, with 1 MB of flash memory and
256 kB of RAM. The hardware implementation is carried out
on a circuit with an LED notification, as shown in Figure 4.

Evaluation Metrics: Accuracy is defined as Accuracy =
1

2M

∑2M
i=1 1 (yi = ŷi), where 2M is the number of total mea-

surements in both nominal and faulty working condition, and
1 represents indicator function. Additional metrics include
the number of model parameters, memory usage, and the
inference time. These metrics provide insights into the model’s
complexity, resource requirements, and operational efficiency.

A. Evaluation on collected dataset

The performance of different feature engineering methods is
reported in Table I. The input dimensions are: Current signals
- 408 (baseline), 204 (frequency-domain), 33 (statistical);
Torque signals 408 (baseline), 204 (frequency-domain), 15
(engineered). This directly influences the number of parame-
ters and therefore the storage size.

Our proposed PI features, combined with an MLP classi-
fication model, achieve the highest test accuracy of 97.8%.
Notably, the PI features require less than half the dimen-
sionality of conventional statistical features while improving
accuracy by 12.7%. Compared to frequency-domain features,
our approach enhances accuracy by 4.5% while it reduces
feature dimensionality by 86.4%, significantly minimizing
storage requirements. To further validate the effectiveness of
PI features, we validate them across multiple lightweight clas-
sification models. Remarkably, four out of five models exhibit
a significant accuracy improvement when incorporating PI
features, demonstrating their robustness and generalizability.

B. Edge implementation and evaluation

Table II summarizes the performance of the implemented
models on the arduino board as shown in Figure 4. After
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TABLE I: Accuracy performance of different models with current signals and torque signals with/without feature engineering

Model
Current signals Torque signals

Baseline (Raw) Frequency Statistical Baseline (Raw) Frequency Proposed

DT 68.8 51.2 77.9 61.5 92.3 93.9
RF 77.0 55.3 86.0 64.4 94.9 95.4
GB 74.4 51.4 81.6 54.8 96.0 95.1

SVM 60.5 53.3 83.2 49.5 94.3 94.8
MLP 85.0 55.7 93.6 45.1 97.0 97.8

TABLE II: Performance of models with PI features

Model # Parameters Memory [kB] Time [ms] Accuracy

DT 233 97 0.48 93.9
RF 22328 412 1.20 95.4
GB 1472 291 2.89 95.1

SVM 12082 399 36.54 94.8
MLP 1601 102 0.95 97.8

applying our proposed feature engineering, these lightweight
models can be deployed on this edge device with limited
memory and computational capacity. In industrial settings,
real-time requirements and latency constraints often demand
efficient inference on such devices. The MLP model achieves
the highest accuracy with the second-lowest memory con-
sumption and inference time, highlighting the potential of tiny
ML in IFD even under stringent memory and delay constraints.
Remarkably, using the same MLP structure with the baseline
input size of 408, yields over 40k model parameters, which is
about 25 times of the model trained on the PI-based feature
set. Meanwhile, the statistical feature set produces the second
smallest model at 2.9k parameters, yet this is still 1.81 times
larger than the PI-based model. These reductions demonstrate
the effectiveness of the proposed PI features in reducing
storage overhead while preserving the detection accuracy,
making them well-suited for edge AI applications.

IV. CONCLUSION

In this work, we proposed a novel framework of combining
physics-based feature extraction with efficient Machine Learn-
ing models for Edge-based IFD, and validated using hard-
ware implementations using test bench data. Our experiments
show that the proposed PI feature selection technique reduces
the feature dimensionality without compromising detection
accuracy, and thus alleviates the storage and computational
overhead. One of the many directions for future work is to
investigate the effect and choice of various hyperparameters
e.g., choice of τ , on the performance of the proposed methods.
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