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Abstract—Stochastic bilevel optimization (SBO) is becoming
increasingly essential in machine learning due to its versatility in
handling nested structures. To address large-scale SBO, decen-
tralized approaches have emerged as effective paradigms in which
nodes communicate with immediate neighbors without a central
server. However, current decentralized SBO algorithms face
challenges, including expensive inner-loop updates and unclear
understanding of the influence of network topology, data het-
erogeneity, and the nested bilevel algorithmic structures. In this
paper, we introduce a single-loop decentralized SBO (D-SOBA)
algorithm and establish its transient iteration complexity, which,
for the first time, clarifies the joint influence of network topology
and data heterogeneity on decentralized bilevel algorithms.

Index Terms—bilevel optimization, decentralized optimization,
transient iteration, non-asymptotic convergence analysis.

I. INTRODUCTION

Decentralized stochastic bilevel optimization, which tackles
problems with nested optimization structures across multiple
computing nodes, has gained growing interest. This paper
considers N nodes connected through a given graph topology.
Each node i privately owns an upper-level loss function
fi : Rd × Rp → R and a lower-level loss function gi :
Rd×Rp → R. All nodes collaboratively aim to find a solution
to the following optimization problem:

min
x∈Rd

Φ(x) := f(x, y⋆(x)) :=
1

N

N∑
i=1

fi (x, y
⋆(x)) (1a)

s.t. y⋆(x) := argmin
y∈Rp

{
g(x, y) :=

1

N

N∑
i=1

gi(x, y)

}
(1b)

where fi and gi are defined as:

fi(x, y) := Eξi∼Dfi
[F (x, y; ξi)],

gi(x, y) := Eζi∼Dgi
[G(x, y; ζi)].

(2)

The random variables ξi and ζi represent data samples avail-
able at node i, following local distributions Dfi and Dgi ,
respectively. Throughout this paper, we assume local data
distributions vary across different nodes, which may result in
data heterogeneity issues during the training process.

∗Equal contribution. §Corresponding author.

Limitations in existing literature. Existing works, such as
[1]–[5], have developed decentralized bilevel algorithms that
offer both theoretical guarantees and empirical effectiveness.
However, two key limitations remain in the current literature:

• Expensive inner-loop updates. Existing algorithms rely
on computationally costly inner-loop updates to estimate
the lower-level solution y⋆(x) and the Hessian inverse
of gi(x, y). These updates not only increase computa-
tional complexity but also incur significant communica-
tion overhead, limiting the practicality of the algorithms.

• Inadequate Non-Asymptotic Analysis. While existing
studies [3]–[5] show that decentralized and centralized
bilevel algorithms achieve the same asymptotic conver-
gence rate, they fail to clarify the non-asymptotic stage,
where decentralization-induced slowdowns are observed
due to limited iterations in practical scenarios. Current
research either overlooks the influence of network topolo-
gies or neglects the impact of data heterogeneity, leaving
critical questions about when and how decentralized
bilevel algorithms slow down unanswered.

Contributions. To address these limitations, we propose a
Decentralized Stochastic One-loop Bilevel Algorithm (D-
SOBA). Our contributions are threefold. First, we establish
that D-SOBA achieves linear speedup with an asymptotic
gradient complexity of O(1/(Nε2)), surpassing the current
results by at least a factor of log(1/ε). Second, we provide a
non-asymptotic1 convergence analysis and derive the transient
iteration complexity for the D-SOBA framework, quantifying
how network topology and data heterogeneity jointly influence
the non-asymptotic convergence stage. Third, we prove that
our algorithm achieves the same asymptotic convergence rate
and transient complexity as single-level algorithms, implying
that the nested structure does not introduce fundamental chal-
lenges to decentralized bilevel optimization.

All our established results as well as those of existing
decentralized SBO algorithms are listed in Table I. D-SOBA

1Following recent conventions in decentralized optimization literature, we
use ‘non-asymptotic convergence’ to characterize the iteration complexity re-
quired to achieve ε-approximate stationarity and use ‘asymptotic convergence’
to characterize the iteration complexity as T → +∞.
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TABLE I
COMPARISON BETWEEN DIFFERENT DECENTRALIZED STOCHASTIC BILEVEL ALGORITHMS. NOTATION T INDICATES THE NUMBER OF
(OUTER) ITERATIONS, 1− ρ ∈ (0, 1] MEASURES THE CONNECTIVITY OF THE UNDERLYING GRAPH, N IS THE NUMBER OF COMPUTING
NODES, G2 DENOTES GRADIENT UPPER BOUND, AND b2 DENOTES THE MAGNITUDE OF GRADIENT DISSIMILARITY. WE ALSO LIST THE

RESULT OF SINGLE-LEVEL DSGD IN THE BOTTOM LINE FOR REFERENCE.

Algorithm Single
loop

Linear
speedup♢

Asymptotic
complexity†

Transient
complexity‡ Assumption◁

DSBO [1] ✗ ✗ 1
ε3

N. A. LC fi

MA-DSBO [2] ✗ ✗ 1
ε2

log( 1
ε
) N. A. LC fi

SLAM [3] ✗ ✔ 1
Nε2

log( 1
ε
) N. A. LC fi

Gossip DSBO [5] ✗ ✔ 1
Nε2

log( 1
ε
) N3G4

(1−ρ)4

▷
BG ∇fi

MDBO [4, Thm 1]∗ ✗ ✗ 1
(1−ρ)2ε2

log( 1
ε
) N. A. BG ∇fi

MDBO [4, Thm 2]∗ ✗ ✔ 1
Nε2

log( 1
ε
) N3

(1−ρ)8
BG ∇fi,∇gi,∇2gi

D-SOBA (ours) ✔ ✔ 1
Nε2

max
{

N3

(1−ρ)2
, N3b2

(1−ρ)4

}
BGD ∇fi,∇gi,∇2gi

Single-level DSGD [6] ✔ ✔ 1
Nε2

max
{

N3

(1−ρ)2
, N3b2

(1−ρ)4

}
BGD ∇fi

♢ Decentralized SBO methods achieve linear speedup if they converge at the rate of 1/
√
NT eventually.

† #gradient/Hessian evaluations to achieve an ε-stationary solution when ε → 0 (smaller is better).
‡ #transient iterations an algorithm experiences before the asymptotic rate dominates (smaller is better).
◁ Additional assumptions beyond convexity, smoothness, and stochastic variance. The bounded gradient dissimilarity (BGD) assumption

is weaker than the Lipschitz continuity (LC) and bounded gradients (BG).
▷ G is the uniform upper bound of gradients (i.e., ∥∇fi∥2 ≤ G2) assumed in [5]. It typically holds that b ≪ G where b gauges the

magnitude of the gradient dissimilarity, i.e., 1
N

∑N
i=1 ∥∇fi −∇f∥2 ≤ b2.

∗ Asymptotic rates and transient complexities are not given in [4]. But one can obtained it by the definition of asymptotic rates.

achieves the state-of-the-art asymptotic rate, asymptotic gra-
dient complexity, and transient iteration complexity under
more relaxed assumptions compared to existing methods.
Furthermore, our algorithm even achieves the same theoretical
convergence rates as single-level DSGD [6].

II. PRELIMINARIES

A. Notations

For a second-order differentiable function f : Rd×Rp → R,
we denote ∇1f(x, y) and ∇2f(x, y) as the partial gradients
at the x’s position and y’s position, respectively. Correspond-
ingly, ∇2

12f(x, y) ∈ Rd×p and ∇2
22f(x, y) ∈ Rp×p represent

its partial Jacobian matrix. Differently, we use ∇xf(x, y
⋆(x))

to denote the gradient of f with respect to x by viewing y as
a function of x. We let ∥·∥ denote the ℓ2 norm of both vectors
and matrices, ∥·∥F denote the Frobenius norm of a matrix, and
1N ∈ RN represent the vector with all elements set to 1. For
any local variables {x(t)

i }Ni=1, the subscript i (resp, superscript
t) indicates the index of the node (resp, the iteration) and we
write their average

∑N
i=1 x

(t)
i /N as x̄(t). We write a ≲ b if

a ≤ Cb for a constant C > 0.

B. Assumptions

With the notations introduced above, we next state the
assumptions used in the paper.

Assumption 1 (SMOOTHNESS): There exist positive con-
stants L∇f , L∇g , L∇2g , Lf such that for any 1 ≤ i ≤ N ,

1. ∇fi,∇gi,∇2gi are L∇f , L∇g , L∇2g Lipschitz continuous
respectively;

2. gi(x, ·) is µg-strongly convex for any given x ∈ Rd;
3. ∥∇2fi(x, y

⋆(x))∥ ≤ Lf < ∞ for all x ∈ Rd in which
y⋆(x) is defined in problem (1b).

It is noteworthy that the third condition of Assumption 1
relaxes the restrictive assumptions of Lipschitz continuity of
f or, equivalently, the boundedness of ∇2f used in [7].

Due to the heterogeneity of local data distributions, the local
functions {(fi, gi)}Ni=1 are not identical across different nodes.
To tackle this, we assume bounded gradient dissimilarity as
follows, which has been widely adopted in prior literature [8].

Assumption 2 (GRADIENT DISSIMILARITY): There exists a
constant b ≥ 0 such that:

1

N

N∑
i=1

∥∇1fi −∇1f∥2 ≤ b2,
1

N

N∑
i=1

∥∇2fi −∇2f∥2 ≤ b2,

1

N

N∑
i=1

∥∇2gi −∇2g∥2 ≤ b2,
1

N

N∑
i=1

∥∥∇2
12gi −∇2

12g
∥∥2 ≤ b2,

1

N

N∑
i=1

∥∥∇2
22gi −∇2

22g
∥∥2 ≤ b2.

We also make the following standard assumption for
stochastic gradients and Hessians.

Assumption 3 (STOCHASTICITY): There exist constants σ ≥
0 such that for any given (x, y) ∈ Rd×Rp and 1 ≤ i ≤ N , the
∇1F (x, y; ξi), ∇2F (x, y; ξi), ∇2G(x, y; ζi), ∇2

12G(x, y; ζi),
and ∇2

22G(x, y; ζi) are unbiased estimators of ∇1fi(x, y),
∇2fi(x, y), ∇2gi(x, y), ∇2

12gi(x, y), and ∇2
22gi(x, y), respec-

tively, with bounded variance σ2.
To facilitate decentralized communication, we introduce the

mixing matrix W = [wij ]
N
i,j=1 ∈ RN×N to gauge information

between nodes in which wij = 0 means node i is not
connected to node j. The following assumption on the mixing
matrix is widely used for decentralized algorithms [9], [10].
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Assumption 4 (MIXING MATRIX): The mixing matrix W is
doubly stochastic, i.e.,

1⊤
NW = 1⊤

N , W1N = 1N .

Moreover, we assume ρ :=
∥∥W − 1N1

⊤
N/N

∥∥
2
∈ [0, 1).

Remark 1 (SPECTRAL GAP): In decentralized algorithms,
the quantity 1− ρ is known as the spectral gap [11], [12] of
W , which serves as a metric for measuring the connectivity
of the network topology. Notably, as 1 − ρ → 1, it indicates
that the topology is well-connected. Conversely, as 1−ρ → 0,
it suggests that the topology is potentially sparse [13].

III. D-SOBA ALGORITHM

The core challenge in stochastic bilevel optimization lies
in estimating the hypergradient ∇Φ(x), due to the implicit
dependence of y⋆(x) on x. Under Assumption 1, ∇Φ(x) is:

∇Φ(x) = ∇1f(x, y
⋆(x))−

(
∇2

12g(x, y
⋆(x)) ·[

∇2
22g(x, y

⋆(x))
]−1 · ∇2f(x, y

⋆(x))
)

(4)

which is computationally expensive due to the need for invert-
ing the partial Hessian. Moreover, the Hessian inversion

[
∇2

22g(x, y
⋆(x))

]−1
=

[
1

N

N∑
i=1

∇2
22gi(x, y

⋆(x))

]−1

cannot be easily accessed by decentralized communication.
However, these challenges can be effectively addressed by the
novel single-node framework known as SOBA [14]. SOBA in-
troduces z⋆(x) =

[
∇2

22g(x, y
⋆(x))

]−1 ∇2f(x, y
⋆(x)), which

can be interpreted as the solution to minimizing the problem:

1

N

N∑
i=1

{
1

2
z⊤∇2

22gi(x, y
⋆) z−z⊤∇2fi(x, y

⋆)

}
. (5)

where y⋆ denotes y⋆(x). It is worth noting that while z⋆(x)
cannot be written as a finite sum across nodes, problem (5)
involves only simple sums.

To save computation, we can approximately solve (5) using
one-step (stochastic) gradient descent. Thus, combined with
one-step (stochastic) gradient descent to update the upper- and
lower-level variables (x, y), forms the centralized single-loop
framework for solving problem (1):

minimize (1a): x(t+1) = x(t) − αt

N

N∑
i=1

D
(t)
x,i, (6a)

minimize (1b): y(t+1) = y(t) − βt

N

N∑
i=1

D
(t)
y,i, (6b)

minimize (5): z(t+1) = z(t) − γt
N

N∑
i=1

D
(t)
z,i, (6c)

where D
(t)
x,i, D

(t)
y,i and D

(t)
z,i are unbiased estimates of

D
(t)
x,i(x, y, z) = ∇1fi(x

(t), y(t))−∇2
12 gi(x

(t), y(t))z(t),

D
(t)
y,i(x, y, z) = ∇2 gi(x

(t), y(t)),

D
(t)
z,i(x, y, z) = ∇2

22 gi(x
(t), y(t))z(t) −∇2fi(x

(t), y(t)),

Algorithm 1 D-SOBA

Require: initialize x(0) = y(0) = z(0) = h(0) = 0,
{αt}, {βt}, {γt}, {θt}, and the mixing matrix W
for t = 0, 1, · · · , T − 1 do

for each node i = 1, 2, · · · , N in parallel do
x
(t+1)
i :=

∑
j∈Ni

wij(x
(t)
j − αth

(t)
j );

y
(t+1)
i :=

∑
j∈Ni

wij(y
(t)
j − βtv

(t)
j );

z
(t+1)
i :=

∑
j∈Ni

wij

(
z
(t)
j − γt(H

(t)
j z

(t)
j − u

(t)
i,y)

)
;

ω
(t+1)
i := u

(t)
i,x − J

(t)
i z

(t)
i ;

h
(t+1)
i := (1− θt)h

(t)
i + θtω

(t+1)
i .

end for
end for

respectively, and αt, βt and γt are learning rates. We denote
recursion (6) as centralized SOBA due to the requirement of
a central server. It is noteworthy that (6) does not require any
inner loop to approximate the lower-level solution y⋆(x) or
directly evaluate the Hessian inversion of g(x, y).

Inspired by decentralized gradient descent [15], we extend
centralized SOBA (6) to decentralized setup:

x
(t+1)
i =

∑
j∈Ni

wij(x
(t)
j − αtD

(t)
x,j), (7a)

y
(t+1)
i =

∑
j∈Ni

wij(y
(t)
j − βtD

(t)
y,j), (7b)

z
(t+1)
i =

∑
j∈Ni

wij(z
(t)
j − γtD

(t)
z,j), (7c)

where x
(t)
i , y

(t)
i and z

(t)
i are local variables maintained by each

node i at iteration t. The set Ni includes node i and all its
immediate neighbors.

The detailed implementation of recursion (7) is listed in
Algorithm 1. For each iteration t, we independently sample a
minibatch of data ξ

(t)
i ∼ Dfi , ζ

(t)
i ∼ Dgi and compute

u
(t)
i,x := ∇1F (x

(t)
i , y

(t)
i ; ξ

(t)
i ), u

(t)
i,y := ∇2F (x

(t)
i , y

(t)
i ; ξ

(t)
i );

v
(t)
i := ∇2G(x

(t)
i , y

(t)
i ; ζ

(t)
i );

J
(t)
i := ∇2

12G(x
(t)
i , y

(t)
i ; ζ

(t)
i ), H

(t)
i := ∇2

22G(x
(t)
i , y

(t)
i ; ζ

(t)
i ).

These variables are used in Algorithm 1 at each iteration.
Furthermore, we impose a moving average on the update of
xi in Algorithm 1 as it is essential to reduce the order of bias
from sample noise in the convergence analysis and relax the
technical assumptions.

IV. CONVERGENCE ANALYSIS

In this section, we establish the convergence guarantees for
D-SOBA. At the beginning, we introduce the notation F (t) =

σ
[⋃t

τ=0

(⋃N
i=1{x

(τ)
i , y

(τ)
i , z

(τ)
i , h

(τ)
i }

⋃
{αt, βt, γt, θt, δt}

)]
to denote the σ-field generated by all items with superscripts
in the first t iterations. We also denote Et[·] := E[·|F (t)]
as the conditional expectation with respect to F (t). Now
we present the convergence rate for D-SOBA, which can be
described as the following theorem:
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Theorem 1: Under Assumptions 1, 2, 3, and 4, there exist
c1, c2, c3 > 0 such that if αt ≡ Θ(

√
N/T ), and βt ≡ c1αt,

γt ≡ c2αt, θt ≡ c3αt for any 0 ≤ t < T , the iterators ȳ(t), z̄(t)

in D-SOBA satisfy:

1

T

T−1∑
t=0

E
[∥∥∥ȳ(t) − ȳ

(t)
∗

∥∥∥2 + ∥∥∥z̄(t) − z̄
(t)
∗

∥∥∥2] (9)

≲
1

T

T−1∑
t=0

E
[∥∥∥h̄(t)

∥∥∥2]+ α

N
+

ρ2α2b2

(1− ρ)2
+

ρ2α2ι2

(1− ρ)2
+

ρ2α2

(1− ρ)
,

where x̄(t) = (1/N)
∑N

i=1 x
(t)
i , ȳ⋆(t) denotes the minimum of

(1b) with respect to x̄(t), and z̄⋆(t) denotes the minimum of
(5) with respect to x̄(t), ȳ⋆(t). Furthermore, it holds that

1

T

T−1∑
t=0

E
[∥∥∥∇Φ(x̄(t))

∥∥∥2] ≲
κ5

√
NT

+
ρ

2
3κ6

(1− ρ)
1
3T

2
3

+
ρ

2
3 b

2
3κ6

(1− ρ)
2
3T

2
3

+
ρκ6

(1− ρ)T
+

κ13

T
+

κ7

NT
, (10)

where κ := max{Lf , L∇f , L∇g, L∇2g}/µg denotes the con-
dition number (Proof is in our long report [16]).
Asymptotic linear speedup. An algorithm reaches the linear
speedup stage if the term 1/

√
NT dominates the convergence

rate [8] eventually (i.e., T → ∞). In this regime, the required
iterations to achieve an ε-stationary solution can decrease
linearly as the number of computing nodes increases. D-SOBA
attains linear speedup eventually while algorithms of [1], [2]
only achieve a much slower asymptotic rate 1/

√
T .

Transient iteration complexity. Transient iteration complex-
ity [17] refers to the number of iterations an algorithm has
to experience before reaching its asymptotic linear-speedup
stage, that is, iterations 1, · · · , T where T is relatively small so
that non-NT terms still dominate the rate. Transient iteration
complexity measures the non-asymptotic stage in decentralized
stochastic algorithms. Here, we mainly consider the influence
of N, ρ, b on transient complexity analysis. Many existing
works, such as [1], [2], fail to establish the transient iter-
ation complexity as their analysis ignores all non-dominant
convergence terms. With fine-grained convergence rate (10),
the transient iteration complexity of D-SOBA is derived as:

Corollary 1 (TRANSIENT ITERATION COMPLEXITY): Under
the same assumptions as in Theorem 1, the transient iteration
complexity of D-SOBA is O

(
max

{
N3

(1−ρ)2 ,
N3b2

(1−ρ)4

})
.

Joint influence of graph and heterogeneity. To our knowl-
edge, Corollary 1 is the first result that quantifies how net-
work topology and data heterogeneity jointly affect the non-
asymptotic convergence in decentralized SBO. First, Corol-
lary 1 implies that a sparse topology with 1 − ρ → 0 can
significantly amplify the influence of data heterogeneity b2.
Second, a large data heterogeneity b2 also exacerbates the
adverse impact of sparse topologies from O((1 − ρ)−2) to
O((1−ρ)−4). Furthermore, Corollary 1 also implies strategies
to improve the transient iteration complexity: developing well-
connected graphs with ρ → 0, or developing more effective

decentralized algorithms that can remove the influence of b2

(e.g., algorithms built upon gradient tracking [18] or Exact-
Diffusion [12]). In contrast, existing transient complexities [4],
[5] are worse than our Corollary 1, especially when b2 → 0
or (1− ρ) → 0, see Table I for detailed comparison.

As effective as single-level DSGD. We find that both the
asymptotic rate and transient iteration complexity in D-SOBA
are identical to that of single-level decentralized SGD [6].
This implies that the nested lower- and upper-level structure
does not pose substantial challenges to decentralized stochastic
optimization in terms of both asymptotic rate and transient
iteration complexity.

V. EXPERIMENTS

We use the hyper-cleaning problem [19] with the Fashion
MNIST dataset [20] to validate our theoretical findings. The
60,000 training images are split into a training set of 50,000
images and a validation set of 10,000 images. The hyper-
cleaning problem involves training a classifier in a corrupted
setting, where the label of each training sample is replaced by a
random class with probability p (i.e., the corruption rate). This
is performed on a decentralized network with N = 10 clients,
which can be formulated as (1), where the loss functions at
the upper and lower levels for the i-th node are defined as:

fi(x, y) =
1∣∣∣D(i)
val

∣∣∣
∑

(ξe,ζe)∈D
(i)
val

L(ϕ(ξe; y), ζe),

gi(x, y) =
1∣∣∣D(i)
tr

∣∣∣
∑

(ξe,ζe)∈D(i)
tr

σ(xe)L(ϕ(ξe; y), ζe) + C ∥y∥2 ,

where ϕ denotes the parameters of a two-layer MLP network
with a 300-dimensional hidden layer and ReLU activation,
while y represents its parameters. L denotes the cross-entropy
loss. The sigmoid function σ(xe) assigns reduced weights to
corrupted samples through nonlinear activation. D(i)

val and D(i)
tr

represent the validation and training sets of client i, which are
sampled randomly from a Dirichlet distribution with parameter
α = 0.1 in the non-i.i.d. case. We set C = 0.001 and the step
sizes to 0.1. All experiments are repeated 10 times.

We first compare D-SOBA with MA-DSBO [2] and Gossip
DSBO [5] over an exponential graph [13] with p = 0.1, 0.4,
respectively. For all algorithms, the step size is set to 0.1 and
the batch size is set to 200. The moving average parameter
θt for D-SOBA and MA-DSBO is set to 0.8. For MA-DSBO,
we set the number of inner-loop iterations to T = 5 and the
number of outer-loop iterations to K = 5. For Gossip DSBO,
the number of Hessian-inverse estimation iterations is set to
T = 5. At the end of the outer parameter update, we use the
average of y across all clients for classification on the test set.
Figure 1 illustrates the upper-level loss for these algorithms,
with D-SOBA converging faster than the other algorithms.

Next, we apply D-SOBA to various topologies, including
Adjusted Ring, 2D-Torus, Exponential graph [13], and the
centralized case, under a non-i.i.d. setting. We set p = 0.2,
a batch size of 200, and repeat each case 10 times, reporting
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Fig. 1. The upper-level loss of dif-
ferent decentralized stochastic bilevel
optimization algorithms.
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Fig. 2. The validation loss (left) and test accuracy (right) of D-SOBA with
different communication topologies.
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Fig. 3. The test accuracy of D-SOBA
with different moving-average param-
eter θt.

the mean of all trials. Figure 2 presents the upper-level loss
and test accuracy for the different cases. From these results,
we observe that topologies with smaller spectral gaps converge
more rapidly and achieve higher test accuracy in less time.

Finally, we investigate the influence of the moving average
parameter θ on convergence. With a batch size of 100 and
p = 0.2, we run D-SOBA on an Adjusted Ring with θ ∈
{1.0, 0.8, 0.7, 0.6}, where the weight matrix W = [wij ]N×N

of the Adjusted Ring satisfies:

wij =


0.4, if (j − i)%N ∈ {±1},
0.2, if j = i,

0, else.

We repeat each case 10 times to obtain the test accuracy. From
Figure 3, the cases with θ = 0.7, 0.8 achieve higher average
test accuracy than those with θ = 0.6, 1.0, suggesting a trade-
off in the choice of θ with respect to convergence.

VI. CONCLUSION

This paper introduces D-SOBA, a single-loop algorithm for
decentralized stochastic bilevel optimization that achieves a
state-of-the-art asymptotic convergence rate, as well as im-
proved gradient and Hessian complexity, under more relaxed
assumptions compared to existing methods. Additionally, we
provide the first analysis of the joint influence of network
topology and data heterogeneity on bilevel algorithms, focus-
ing on transient iteration complexity.
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