
Smoothing ADMM for Non-convex and
Non-smooth Hierarchical Federated Learning

Reza Mirzaeifard, Stefan Werner
Department of Electronic Systems, Norwegian University of Science and Technology, Norway

E-mails: {reza.mirzaeifard, stefan.werner}@ntnu.no

Abstract—This paper presents a hierarchical federated learn-
ing (FL) framework that extends the alternating direction
method of multipliers (ADMM) with smoothing techniques,
tailored for non-convex and non-smooth objectives. Unlike tra-
ditional hierarchical FL methods, our approach supports asyn-
chronous updates and multiple updates per iteration, enhancing
adaptability to heterogeneous data and system settings. Addi-
tionally, we introduce a flexible mechanism to leverage diverse
regularization functions at each layer, allowing customization to
the specific prior information within each cluster and accom-
modating (possibly) non-smooth penalty objectives. Depending
on the learning goal, the framework supports both consensus
and personalization: the total variation norm can be used to
enforce consensus across layers, while non-convex penalties such
as minimax concave penalty (MCP) or smoothly clipped absolute
deviation (SCAD) enable personalized learning. Experimental re-
sults demonstrate the superior convergence rates and accuracy of
our method compared to conventional approaches, underscoring
its robustness and versatility for a wide range of FL scenarios.

Index Terms—Federated learning, non-convex and non-smooth
sparse penalties, smoothing techniques

I. INTRODUCTION

The rapid expansion of cyber-physical systems within the
internet of things (IoT) ecosystem has necessitated a shift from
centralized data processing to federated frameworks. This
transition is driven by the significant computational demands,
bandwidth constraints, and privacy concerns associated with
traditional centralized methods [1], [2]. Federated learning
(FL) has emerged as a pivotal solution, enabling collabora-
tive model training across distributed devices while keeping
data localized, thereby addressing critical privacy challenges
and communication overhead [3], [4]. Recent advancements
have further enhanced FL’s scalability through hierarchical
architectures, where two layers of aggregation are performed:
edge servers handle intra-set computations for individual client
groups, while a cloud server manages inter-set coordination
across clusters [4], [5]. This hierarchical approach optimizes
resource utilization and facilitates parallel computations, mak-
ing it indispensable for large-scale distributed systems.

Despite these benefits, hierarchical FL environments face
substantial heterogeneity among participating clients, neces-
sitating flexible update strategies. First, data heterogeneity
arises from distribution skew, label skew, feature skew, and
variations in data quality (e.g., quantity skew and noise levels)
[6], [7]. Second, model heterogeneity occurs when clients

This work was supported by the Research Council of Norway.

must tailor model architectures or optimizers to accommodate
various hardware or domain requirements [8], [9]. Third, task
heterogeneity emerges when clients solve distinct yet related
problems [10], [11]. Fourth, communication heterogeneity
stems from inconsistent network conditions and bandwidth
constraints [12], [13]. Finally, device heterogeneity introduces
disparities in computational power and storage capacities [14],
[15]. These factors underscore the need for a flexible regular-
ization strategy, support of asynchronous updates (to handle
communication delays), and multiple updates per iteration (to
leverage resource-rich clients) in hierarchical FL.

In addition to these challenges, non-smooth and non-convex
formulations have gained increasing importance in FL due
to real-world complexities such as noise, outliers, and the
need for personalization [16]–[19]. Non-smooth objectives
offer robustness against outliers and heavy-tailed distributions,
improving the reliability of the learned models. Non-smooth
regularization can induce sparsity (e.g., using an l1 penalty) or
similarity constraints (e.g., total variation norms) to promote
interpretable structures [17], [20]. Meanwhile, non-convex
regularizers like smoothly clipped absolute deviation (SCAD)
[21] and minimax concave penalty (MCP) [22] mitigate the
bias of convex penalties and enable personalized learning
by capturing intricate data relationships across heterogeneous
clients [16]. However, state-of-the-art methods often strug-
gle with non-convexity and non-smoothness, especially when
asynchronous updates, multiple local iterations, and scalability
are required [23], [24]. Consequently, there is a need for a
new optimization framework that efficiently manages these
complexities to produce robust, interpretable, and personalized
solutions for large-scale hierarchical FL environments.

This work introduces the hierarchical federated smooth-
ing ADMM (HFSAD), a framework tailored for hierarchi-
cal FL that addresses non-convex, non-smooth optimization
challenges while accommodating heterogeneous network and
computational conditions. HFSAD leverages smoothing tech-
niques selectively on consensus or personalization penalties
(e.g., total variation norms), making them tractable within
an ADMM-based scheme. At the same time, it retains non-
smooth penalties (e.g., l1, MCP, SCAD) for sparsity and
inductive knowledge about parameters, thereby promoting
interpretability and robust regularization. This dual approach
balances global alignment and local customization, while
enabling principled handling of outliers or heavy-tailed data
distributions. HFSAD supports asynchronous updates and

1178ISBN: 978-9-46-459362-4 EUSIPCO 2025

multiple local iterations, accommodating heterogeneous net-
work and computational conditions. By uniting smoothing-
driven linearization with ADMM’s decomposition capabilities,
our method maintains scalability across distributed clusters,
ensuring robustness to outliers, interpretability via sparse
solutions, and convergence guarantees. Experimental results
demonstrate that HFSAD surpasses existing approaches in
accuracy, speed, and flexibility, establishing a new standard
for distributed data analysis under diverse system constraints.
Mathematical Notations: Scalars are denoted by lowercase
letters, column vectors by bold lowercase letters, and ma-
trices by bold uppercase letters. The transpose of a matrix
A is indicated by A⊤. The jth column of A is denoted
by aj , and the element in the ith row and jth column of
A is denoted by aij . The proximal operator of a function
f(·), scaled by a parameter γ, is defined as Proxf (w; γ) =

argminx

{
f(x) + 1

2γ ∥x− w∥22
}
. Finally, ∂f(u) denotes the

sub-gradient of the function f(·) at point u.

II. PROBLEM FORMULATION

Assume that the system consists of one cloud server and L
edge servers, where each edge server, indexed by l with l =
1, 2, . . . , L, is associated with a unique set of clients Vl. Each
set Vl contains Nl clients, and every client j in Vl possesses its
own local dataset Dlj = {Xlj ,ylj}. Consequently, the global
objective function is defined as follows:

min
{{wj

l }j∈Nl
}L
l=1

L∑
l=1

∑
j∈Vl

flj(w
j
l) +Rc({wj

l }) +Rw({wj
l }),

(1)
where {{wj

l }j∈Nl
}Ll=1 denotes the local model parameters

across clients. Further, within each cluster Vl, there is a
cluster-level parameter wl to which individual client parame-
ters are aligned. The regularization function Rc(·) is designed
to enforce global consensus or allow for personalization within
a cluster, while Rw(·) imposes prior knowledge about the
parameters (e.g., based on historical data or domain expertise).

We now extend our formulation by introducing a set of
cluster-level parameters {wl}Ll=1 and an overall global pa-
rameter w0. With these additional parameters, the objective
function is rewritten as:

min
W

L∑
l=1

∑
j∈Vl

flj(w
j
l) +Rc

(
{wj

l }
Nl
j=1,wl

)
+ Rc

(
{wl}Ll=1,w0

)
+Rw(w0) +Rw

(
{wl}Ll=1

)
. (2)

Here, W denotes the collection of all parameters, including
the local client parameters {wj

l }, the cluster-level parameters
{wl}Ll=1, and the overall global parameter w0. In this for-
mulation, the first regularization term enforces intra-cluster
relationships (which may include personalization), while the
second term captures the relationship between the cluster-level
parameters and the overall global parameter.

To further refine the model, we decompose the regulariza-
tion into per-cluster components by defining Rl

c(wl,w0), that

quantifies the discrepancy between the cluster-level parameter
wl and the global parameter w0 for the lth cluster. Moreover,
we allow the intra-cluster regularization to be flexible enough
to enable personalization for each client by denoting it as
Rl,j

c (wj
l ,wl). This leads to the equivalent formulation:

min
W

L∑
l=1

[∑
j∈Vl

flj(w
j
l) +Rl,j

c (wj
l ,wl)

+ Rl
c(wl,w0) +Rl

w(wl)

]
+R0

w(w0). (3)

This formulation decouples the regularization terms, allowing
separate control the intra-cluster consensus (or personaliza-
tion) between local and cluster-level models (via Rl,j

c) and
the inter-cluster relationship with the global model (via Rl

c),
while incorporating prior knowledge through the Rw terms.

Motivated by the need to efficiently handle non-smooth
regularizers that promote sparsity, our approach leverages
the Alternating Direction Method of Multipliers (ADMM).
In our formulation, the regularization function Rw is often
non-smooth to induce sparsity in the parameters, which en-
hances interpretability and leverages prior knowledge. ADMM
naturally accommodates such non-smooth terms through its
proximal update steps, thereby eliminating the need for ad
hoc modifications. Moreover, ADMM has been demonstrated
to improve learning performance in terms of both convergence
speed and accuracy.

In order to apply ADMM more efficiently, we introduce
auxiliary variables Z and Q that mirror the structure of W.
Specifically, we define Z = {{zjl }Lj∈Vl, l=1 ∪ {zl}Ll=1}, Q =

{{qj
l }Lj∈Vl, l=1 ∪ {ql}Ll=1}, where the variables zjl and qj

l

are copies of the local parameters wj
l and the cluster-level

parameters wl, respectively, and zl and ql are copies of wl

and the global parameter w0. With these auxiliary variables,
our ADMM-based formulation is modified as follows:

min
W,Z,Q

L∑
l=1

[∑
j∈Vl

flj(w
j
l) +Rl,j

c (zjl ,q
j
l)

+ Rl
c(zl,ql) +Rl

w(wl)

]
+R0

w(w0)

subject to: zjl = wj
l , qj

l = wl, ∀j ∈ [Nl], ∀l ∈ [L],

zl = wl, ql = w0, ∀l ∈ [L]. (4)

However, in non-convex settings ADMM generally requires
that the variables updated in its second block be smooth in
order to ensure convergence [18], [25]–[28], as well as to
support asynchronous and multiple updates [29]. To address
this issue, we iteratively apply smoothing techniques to those
non-smooth components that are updated in the second block
and that could potentially impede the update process. This
reformulation preserves the sparsity-inducing properties of
Rw while ensuring that the ADMM updates remain stable and
convergent. In the next section, we provide further details.

1179

III. HIERARCHICAL FEDERATED SMOOTHING ADMM

To address the challenges in optimizing non-smooth func-
tions within the ADMM framework, we employ smoothing
techniques to approximate a function g by a family of
smooth upper-bound functions g̃ [30]. These approximations
are beneficial in locally Lipschitz settings, ensuring continuity,
differentiability, and well-behaved gradients—features that are
critical for efficient optimization. Importantly, as the smooth-
ing parameter µ tends to zero, g̃(x;µ) converges to the original
function g(x), thereby preserving its essential properties [31].

Specifically, we approximate the intra-cluster regulariza-
tion functions Rl,j

c (zjl ,q
j
l) and the inter-cluster regularization

functions Rl
c(zl,ql) by their smooth counterparts R̃l,j

c (·;µ)
and R̃l

c(·;µ), respectively. Moreover, in cases where the loss
functions flj(·) are not proximal-friendly, we employ smooth
approximations f̃lj(·;µ) to enable a linearized update step.
We emphasize that these smooth approximations serve as
upper bounds to the original functions, converging to the true
function as µ decreases.

With these definitions, the approximate augmented La-
grangian for our problem can be written as

L̄σ,µ(W,Z,Q,Λ,Γ) =

L∑
l=1

{∑
j∈Vl

flj(w
j
l)+R̃l,j

c (zjl ,q
j
l ;µ

j
l)

+ R̃l
c(zl,ql;µl) +Rl

w(wl)

}
+R0

w(w0) +

L∑
l=1

{∑
j∈Vl

[

⟨Λj
l , w

j
l−zjl ⟩+

σj
l

2
∥wj

l−zjl ∥
2+⟨Γj

l , wl−qj
l ⟩+

σj
l

2
∥wl−qj

l ∥
2
]
+

⟨Λl, wl−zl⟩+
σl

2
∥wl−zl∥2+⟨Γl, w0−ql⟩+

σl

2
∥w0−ql∥2

}
(5)

Here, Λ = {Λj
l , Λl} and Γ = {Γj

l , Γl} are the collections
of dual variables and {σj

l , σl} are the penalty parameters. In
our algorithm, each client j ∈ Vl and each cluster head l
maintains its own update counter—denoted by kjl for clients
and kl for cluster heads—that reflects the number of updates
it has performed. Nodes are allowed to update asynchronously
and can execute multiple updates within each global iteration
k0. This design enables each node to progress at its own
pace based on available computational resources and the
characteristics of its local data, a flexibility that is essential
for accommodating the inherent heterogeneity in federated
learning environments.

To progressively adjust the approximations, the parameters
µj
l , σ

j
l and µl, σl are updated at each local iteration kjl and kjl

respectively as following, where c, d, α, β > 0:

σj
l
(kj

l) = c

√
kjl , µ

j
l
(kj

l) =
α√
kjl

, σ
(kl)
l = d

√
kl, µ

(kl)
l =

β√
kl

(6)

By assuming that each function flj(·) is proximable and
weakly convex, we update each wj

l as:

wJ
l
(kj

l) = Proxflj (ιl;
1

σj
l
(kj

l)
) (7)

where ιl = zjl
(kj

l −1)− Λj

l
(k

j
l
−1)

σj
l
k
j
l

. If a closed-form solution for

the proximal operator of any flj(·) is not available, we can
employ an upper-bound smooth approximation, as suggested
in [32], and linearize the update step.

Subsequently, in the next step, we update each zjl and qj
l

in a single step as:[
zjl

(kj
l)

qj
l
(kj

l)

]
= argmin

zj
l ,q

j
l

R̃l,j
c (zjl ,q

j
l ;µ

j
l
(kj

l))+
σj
l
(kj

l)

2
×

(∥∥∥∥∥zjl−
wj

l
(kj

l) −
Λj

l
(kj

l −1)

σj
l
(kj

l)

∥∥∥∥∥
2

2

+

∥∥∥∥∥qj
l −wl

(kl) −
Γj
l
(kj

l −1)

σj
l
(kj

l)

∥∥∥∥∥
2

2

)
(8)

Following the simplification provided in [33], we obtain:

[
zjl

(kj
l)

qj
l
(kj

l)

]
=

1

2

w
j
l
(kj

l) +
Λj

l
(k

j
l
−1)

σj
l
(k

j
l
)

+wl
(kl) +

Γj

l
(k

j
l
−1)

σj
l
(k

j
l
)

wj
l
(kj

l) +
Λj

l
(k

j
l
−1)

σj
l
(k

j
l
)

+wl
(kl) +

Γj

l
(k

j
l
−1)

σj
l
(k

j
l
)


+

1

2

[
−e
e

]
(9)

where e = Prox
R̃l,j

c (·,·;µj
l
(k

j
l
))

(
−wj

l
(kj

l)−Λj

l
(k

j
l
−1)

σj
l
(k

j
l
)

+wl
(kl)+

Γj

l
(k

j
l
−1)

σj
l
(k

j
l
)
; 2

σj
l
(k

j
l
)

)
. When Rl,j

c (·) is defined using ℓ1, MCP,

or SCAD penalties, the proximal operator ProxR̃l,j
c (·,·;µj

l)
is

decomposable and can be efficiently computed.
Next, we update each Λj

l and Γj
l as follows:

Λj
l
(kj

l) = Λj
l
(kj

l −1) + σj
l
(kj

l)
(
wj

l
(kj

l) − zjl
(kj

l)
)

(10)

Γj
l
(kj

l) = Γj
l
(kj

l −1) + σj
l
(kj

l)
(
wl

(kl) − qj
l
(kj

l)
)

(11)

Next, we transmit the updated values kjl , qj
l
(kj

l), and Γj
l
(kj

l)

to the cluster head.
At the cluster head l, we update wl as:

w
(kl)
l = proxRl

w
(r̄l, υl) , (12)

where υl =
1

σ
kl
l +

∑
j∈Vl

σj
l
(k

j
l
+1)

and r̄l = υl

(
σl

(kl)z
(kl−1)
l −

Λl
(kl−1)+

∑
j∈Vl

(σj
l
(kj

l +1)qj
l
(kj

l)−Γj
l
(kj

l))

)
. The cluster head

sends its variable to each client.

1180

Then, we update each zl and ql in a parallel as:[
zl

(kl)

ql
(kl

l)

]
= argmin

zl,ql

R̃l
c(zl,ql;µl

(kl)) +
σl

(kl)

2
×

(∥∥∥∥∥zl−
wl

(kl) −
Λj

l
(kl−1)

σl
(kl)

∥∥∥∥∥
2

2

+

∥∥∥∥ql −w0
(k0) − Γl

(kl−1)

σl
(kl)

∥∥∥∥2
2

)
,

(13)

which can be driven in closed form solution similar to (9).
The updates for dual variables Λl and Γl are given by

Λ
(kl)
l = Λ

(kl−1)
l + σ

(kl)
l

(
w

(kl)
l − z

(kl)
l

)
(14)

Γ
(kl)
l = Γ

(kl−1)
l + σ

(kl)
l

(
w

(kl)
0 − q

(kl)
l

)
(15)

Accordingly, we send the updated values kl, ql
(kl), and Γl

(kl)

to server.
The update step for w0 is performed globally, based on ag-

gregated information from all cluster head data after updating
their respective variables. The update rule for w0 is given by:

w(k0) = ProxR0
w(·)

(
ξ

L∑
l=1

(σ
(kl+1)
l q

(kl)
l + Γ

(kl)
l); ξ

)
, (16)

where ξ = 1∑L
l=1 σ

(kl+1)

l

. The server sends its variable to each

cluster head accordingly.
We emphasize that the asynchronicity and multiple updates

inherent in our framework do not compromise convergence.
This robustness stems from the fact that both the client-level
and cluster-head dual variables are updated via an ascent
step only after their corresponding primal variables (e.g., zl
and ql) have been updated. Such an update order minimizes
the disruptive effect of the dual updates and the associated
penalty parameters, introducing only minor, summable noise
due to smoothing. Moreover, although clients and cluster
heads update asynchronously and independently, we enforce
periodic synchronization. In particular, during a global update
of w0, local updates (for zl, ql, Λl, and Γl) are temporarily
paused, and similarly, the global update step is suspended
while local nodes perform their updates. We further assume
the existence of an integer Ka such that, within every Ka

global iteration, every client and cluster head updates its
variables at least once. The following theorem is provided
in case consensus is needed for hierarchical learning.

Theorem 1. Assume that the each function flj(·), Rl
w(·),∀l ∈

[L]∪0 has bounded gradients indicated by νf and νr respec-
tively, parameters σj

l , µ
j
l , σl, µl are updated according to (6),

αc ≥
√
20νf and βd ≥

√
20(ω) where ω = maxl|Nl|νf +νr.

By choosing Rl,j
c (·) and Rl

c(·) are total variation norm νf∥·∥1
and ω∥·∥1, HFSAD reaches consensus and converges to a
stationary point satisfying the following optimality conditions:

0 ∈
∑
l∈[L]

∑
j∈Nl

flj(w
j
l
∗) +Rl

w(w
∗
l) +R0

w(w
∗) (17a)

wl
∗ = wj

l
∗, ∀j ∈ Nl ∀l ∈ [L] (17b)

w0
∗ = wl

∗. ∀l ∈ [L] (17c)

IV. SIMULATION RESULTS

We consider the restricted-domain SCAD-penalized ro-
bust phase retrieval, where each client j ∈ Vl optimizes:
flj(w) = |ylj − |⟨xlj ,w⟩|2|+I(w), with observations xlj ∈
RM , intensity ylj ∈ R, and the indicator function I(w)
equals 0 if |wm|≤ 5 for all m ∈ [M], and +∞ otherwise.
The SCAD penalty is ηlPλ,γ(·) with λ = 0.1, γ = 2.4,
and weighting ηl = |Nl|− 1

L for Rl
w(·) and ηl = 1 for

R0
w(·). Consensus is enforced via total variation regulariza-

tion: Rl,j
c (·) = ω∥·∥1, Rl

c(·) = ω0∥·∥1, where ω is set by
5maxl,j∥xlj∥, and ωl = maxl|Nl|ω + ηlλγ. We benchmark
against the centralized sub-gradient method in [34], evaluating
performance with relative error: ∥x̂−x∥2

2

∥x∥2
2

, averaged over 100

trials. Simulation parameters include: c = ω, d = ω0

25 ,
α =

√
20, and β = 25

√
20. Measurements are generated

as: ylj = |⟨x⊤
lj ,w⟩|2+ϵlj , xij ∼ N (0, I) ⊙ Bl

h, w ∼
N (0, I) ⊙ Bs, where ⊙ denotes the Hadamard product,
diagonal matrices Bl

h,Bs ∈ RM×M have sparsity ratios
p = 0.8, s = 0.3, and noise ϵlj is drawn i.i.d. from a
mixture exponential distribution with parameters c1 = 0.9,
c2 = 0.1, and λ2 = λ1

10 . The SNR (γ = −20dB) determines

λ1 via: λ1 =

√
(
∑L

l=1 Nl)×21.8×10
γ
10∑L

l=1

∑Nl
j=1|x⊤

ljw|2
. In simulations, we set

(L,N,M) = (5, 50, 25), with Nl = N .
In scenario one (Fig. 1), HFSAD with Km = 10 local

updates per iteration shows superior convergence and lower
relative error compared to Sub. Scenario two (Fig. 2) compares
varying local update steps (Km = 1, 5, 10, 20), demonstrating
fastest convergence with Km = 20, while fewer steps yield
slower but adequate convergence. Scenario three (Fig. 3)
examines HFSAD performance under asynchronicity with
probabilities pc = 0.3, 0.5, 0.7, 1 when Km = 1, showing
comparable and acceptable performance results between dif-
ferent level of collaboration probabilities.

V. CONCLUSION

This paper introduced the Hierarchical Federated Smooth-
ing ADMM (HFSAD), a novel federated learning framework
designed to address non-convex and non-smooth optimiza-
tion challenges in hierarchical federated learning scenarios.
The proposed method integrates smoothing techniques with
ADMM, effectively accommodating asynchronous updates
and supporting multiple local updates per iteration, which
makes it well-suited for heterogeneous network and compu-
tational environments. Our experiments on SCAD-penalized
robust phase retrieval problems demonstrated that HFSAD
achieves improved convergence behavior and higher accuracy
compared to traditional centralized methods. These results
highlight HFSAD’s potential to efficiently handle complex op-
timization landscapes while offering robustness and flexibility
required for real-world federated learning applications.

REFERENCES

[1] X. Chen, W. Liu, and Y. Zhang, “Quantile regression under memory
constraint,” The Annals of Statistics, vol. 47, no. 6, pp. 3244–3273,
Dec. 2019.

1181

0 200 400 600 800 1000

Iterations (k)

-16

-14

-12

-10

-8

-6

-4

Fig. 1: Relative error comparison of HF-
SAD and Sub

0 200 400 600 800 1000

Iterations (k)

-16

-14

-12

-10

-8

-6

Fig. 2: Relative error comparison across
different update steps

0 2000 4000 6000 8000 10000

Iterations (k)

-16

-14

-12

-10

-8

-6

-4

-2

Fig. 3: Relative error comparison across
different collaboration probability

[2] X. Zhou and Y. Xiang, “ADMM-based differential privacy learning for
penalized quantile regression on distributed functional data,” Mathemat-
ics, vol. 10, no. 16, p. 2954, Aug. 2022.

[3] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions,” ACM Computing Surveys, vol. 54, no. 6, pp. 1–36, July 2021.

[4] X. Zhou, W. Liang, I. Kevin, K. Wang, Z. Yan, L. T. Yang, W. Wei,
J. Ma, and Q. Jin, “Decentralized p2p federated learning for privacy-
preserving and resilient mobile robotic systems,” IEEE Wireless Com-
munications, vol. 30, no. 2, pp. 82–89, Apr. 2023.

[5] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous
online federated learning for edge devices with non-iid data,” in IEEE
International Conference on Big Data, 2020, pp. 15–24.

[6] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji et al., “Advances and open problems in federated learning,”
Foundations and Trends in Machine Learning, vol. 14, no. 1–2, pp.
1–210, 2021.

[7] J. Zhang, Z. Li, B. Li, J. Xu, S. Wu, S. Ding, and C. Wu, “Federated
learning with label distribution skew via logits calibration,” in Proceed-
ings of the 39th International Conference on Machine Learning (ICML),
ser. Proceedings of Machine Learning Research, vol. 162, 2022, pp.
26 311–26 329.

[8] E. Diao, J. Ding, and V. Tarokh, “HeteroFL: Computation and com-
munication efficient federated learning for heterogeneous clients,” in
International Conference on Learning Representations (ICLR), 2020.

[9] D. Li and J. Wang, “FedMD: Heterogeneous federated learning via
model distillation,” arXiv preprint arXiv:1910.03581, 2019.

[10] V. Smith, C. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Advances in Neural Information Processing Systems
(NIPS) 30, 2017, pp. 4424–4434.

[11] O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal, “Federated
multi-task learning under a mixture of distributions,” in Advances in
Neural Information Processing Systems 34 (NeurIPS 2021), 2021.

[12] T. Nishio and R. Yonetani, “Client selection for federated learning with
heterogeneous resources in mobile edge,” in Proc. IEEE International
Conference on Communications (ICC), 2019.

[13] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2021, pp. 19–35.

[14] J. Shin, Y. Li, Y. Liu, and S.-J. Lee, “Fedbalancer: Data and pace
control for efficient federated learning on heterogeneous clients,” in
Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, 2022, pp. 436–449.

[15] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, May 2020.

[16] X. Yu, Z. Liu, W. Wang, and Y. Sun, “Clustered federated learning
based on nonconvex pairwise fusion,” Information Sciences, vol. 678,
p. 120956, 2024.

[17] R. Mirzaeifard, D. Ghaderyan, and S. Werner, “Decentralized smoothing
ADMM for quantile regression with non-convex sparse penalties,” arXiv
preprint arXiv:2408.01307, 2024.

[18] R. Mirzaeifard, N. K. Venkategowda, and S. Werner, “Robust phase
retrieval with non-convex penalties,” in 56th IEEE Asilomar Conference
on Signals, Systems, and Computers, 2022, pp. 1291–1295.

[19] R. Mirzaeifard, V. C. Gogineni, N. K. Venkategowda, and S. Werner,
“Dynamic graph topology learning with non-convex penalties,” in 30th
IEEE European Signal Processing Conference, 2022, pp. 682–686.

[20] Y. SarcheshmehPour, Y. Tian, L. Zhang, and A. Jung, “Clustered
federated learning via generalized total variation minimization,” IEEE
Transactions on Signal Processing, vol. 71, pp. 4240–4256, 2023.

[21] C.-H. Zhang, “Nearly unbiased variable selection under minimax con-
cave penalty,” The Annals of Statistics, vol. 38, no. 2, pp. 894–942, Apr.
2010.

[22] J. Fan and R. Li, “Variable selection via nonconcave penalized like-
lihood and its oracle properties,” Journal of the American Statistical
Association, vol. 96, no. 456, pp. 1348–1360, Dec. 2001.

[23] S. M. Azimi-Abarghouyi, N. Bastianello, K. H. Johansson, and V. Fodor,
“Hierarchical federated admm,” IEEE Networking Letters, 2025.

[24] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Hierarchical federated
learning with quantization: Convergence analysis and system design,”
IEEE Transactions on Wireless Communications, vol. 22, no. 1, pp.
2–18, 2022.

[25] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
vol. 78, no. 1, pp. 29–63, Jan. 2019.

[26] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” in IEEE International Conference on Acoustics, Speech and
Signal Processing, Apr. 2015, pp. 3836–3840.

[27] M. Yashtini, “Convergence and rate analysis of a proximal linearized
ADMM for nonconvex nonsmooth optimization,” Journal of Global
Optimization, vol. 84, no. 4, pp. 913–939, Dec. 2022.

[28] A. Themelis and P. Patrinos, “Douglas–Rachford splitting and ADMM
for nonconvex optimization: Tight convergence results,” SIAM Journal
on Optimization, vol. 30, no. 1, pp. 149–181, Jan. 2020.

[29] Y. Miao, D. Kuang, X. Li, S. Xu, H. Li, K.-K. R. Choo, and R. H.
Deng, “Privacy-preserving asynchronous federated learning under non-
iid settings,” IEEE Transactions on Information Forensics and Security,
2024.

[30] R. Mirzaeifard, N. K. Venkategowda, V. C. Gogineni, and S. Werner,
“Smoothing admm for sparse-penalized quantile regression with non-
convex penalties,” IEEE Open Journal of Signal Processing, 2023.

[31] X. Chen, “Smoothing methods for nonsmooth, nonconvex minimiza-
tion,” Mathematical Programming, vol. 134, pp. 71–99, Aug. 2012.

[32] R. Mirzaeifard, N. K. Venkategowda, V. C. Gogineni, and S. Werner,
“ADMM for sparse-penalized quantile regression with non-convex
penalties,” in 30th IEEE European Signal Processing Conference, 2022,
pp. 2046–2050.

[33] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via the
time-varying graphical lasso,” in Proc. 23th Int. Conf. Knowl. Discovery
and Data Mining, 2017, pp. 205–213.

[34] D. Davis, D. Drusvyatskiy, K. J. MacPhee, and C. Paquette, “Subgradi-
ent methods for sharp weakly convex functions,” Journal of Optimiza-
tion Theory and Applications, vol. 179, pp. 962–982, Dec. 2018.

1182

