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Abstract—This paper proposes a low-complexity semi-blind
solution for channel estimation when using Extremely Large-
scale Antenna Arrays (ELAA), without prior knowledge of the
considered channel model. More precisely, the new method
combines pilots and a subspace approach for efficient and robust
channel estimation, considering Intersymbol Interference (ISI).
To reduce the costs, a Divide and Conquer (DAC) methodology is
considered for a fast and parallelizable subspace estimation. For
the positioning objective, physical localization parameters (i.e.,
angles and range) are accurately obtained using a simple least-
squares fitting applied to the first channel tap (i.e. the shortest
path), assuming a line of sight situation. A simulation-based study
is provided to assess the potential of our semi-blind method.

Index Terms—Near-field communications, semi-blind channel
estimation, ELAA, mobile localization, Intersymbol Interference.

I. INTRODUCTION

As a pivotal technology in 5G communications systems,
large antenna arrays, known as massive MIMO, significantly
boost transmission rates through efficient beamforming and
precoding. To maximize the advantages of massive anten-
nas, the latter are scaled to extremely large antenna arrays
(ELAAs) for 6G communications, where the array aperture is
substantially increased to enable ultra-high-speed communi-
cations. However, compared with massive MIMO, ELAA for
6G results in a fundamental change of the electromagnetic
characteristics so that the radiation field can generally be
divided into different regions (models) including far-field and
near-field (NF) regions. Consequently, the channel estimation
for ELAA highly depends on the adopted channel model (see
[1]), making it vulnerable to scenario changes (e.g. near field,
far field, hybrid). This dependency requires, in most cases, a
prior estimation of the polar coordinates of the emitting source,
leading to huge computational costs due to grid search and/or
large matrix decompositions. Also, existing works on ELAA
do not consider Intersymbol Interference (ISI) in their models
for simplification [2–5], which would probably call for the use
of Cyclic Prefix (CP) to try to address it at the expense of the
useful throughput. However, with the targeted data rates in 6G
(up to 1 Tbits/s), ISI could not be neglected. Moreover, only
the predefined pilots are usually considered.

This paper first proposes an approach consisting of a chan-
nel estimation in a multi-path propagation scenario without

specifying the channel’s model and exploiting both the pre-
defined pilots and the unknown data in a semi-blind scheme.
Then, we propose a low-complexity algorithm for the estima-
tion of the polar coordinates associated to the first (direct) path
using a nonlinear least squares fitting approach with a linear
prediction based technique for the initialization stage.

II. DATA MODEL AND PROBLEM FORMULATION

Let us consider a single antenna user located in the near-
field region1, transmitting T symbols to an antenna array with
N elements.

Assume that the N × T baseband observation matrix, Y,
at the output of the antenna array, satisfies the following very
common signal model:

Y = HS+W (1)

where S is an L × T Toeplitz matrix corresponding to the
T transmitted symbols {s(t)}0≤t≤T−1 following L0 different
paths and a delay spread L, i.e.

S = [s(0), · · · , s(T − 1)]

where s(t) = [s(t), s(t − 1), · · · , s(t − L + 1)]T . H =
[h0, ...,hL−1] is the N × L channel matrix with h0 repre-
senting the Line Of Sight (LOS) propagation channel. and
W = [w(0), · · · ,w(T−1)] is the noise matrix whose columns
are assumed random circular white Gaussian vectors with zero
mean and covariance matrix σ2I. Let us assume that the first
P transmitted symbols correspond to the predefined pilots, and
the remaining symbols are the unknown data.

For the estimation of the localization parameters, we con-
sider a scenario similar to the one adopted in [6] and [7],
where a symmetric Uniform Linear Array (ULA) consisting
of N = 2M + 1 elements with spacing d is used. But,
instead of several sources transmitting each through an LOS
path, we have one user transmitting through several paths2,
as depicted in Fig. 1. In this case, the channel between the

1Note that this information is not used for the channel estimation step but
only for the mobile localization task.

2Here, for clarity of exposition, we consider the single-user case. Extension
to a multi-user context offers additional insights that we will explore in
subsequent work.
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Fig. 1. Near-field multipath propagation.

mth antenna, m ∈ {−M, . . . ,M}, and the lth user/scatterer,
l ∈ {0, . . . , L0−1}, located at (rl cos θl, rl sin θl) is given by:

hl(m) = βl exp(jτml) (2)

where βl denotes the channel complex gain3 including the
impact of the random reflection coefficient of the lth scatterer
as it was described in [11], and τml is the phase delay of the
received signal at the mth antenna from the lth user/scatterer
with respect to the reference antenna (m = 0), given by [12]:

τml =
2π

λ

(√
r2l + (md)2 − 2mdrl sin θl − rl

)
(3)

where λ is the wavelength and (rl, θl) are the polar coordinates
of the l-th scatterer. By using a second-order Taylor expansion,
τml in equation (3) can be approximated as [6], [7]:

τml ≈ mωl +m2ϕl (4)

where ωl and ϕl are the electric angles defined by :

ωl ≜ −2πd

λ
sin θl, ϕl ≜

πd2

λrl
cos2 θl (5)

In this context, mobile localization consists of estimating the
coordinates (r0, θ0) of the first LOS path.

III. PROPOSED ALGORITHM

A. First step: Channel estimation

The proposed algorithm aims to estimate, in a semi-blind
scheme, the channel matrix for data detection without relying
on a specific propagation model, to keep it robust to any
scenario/model changes. In fact, the channel matrix H can
be estimated as a specular one by estimating the locations
of the scatterers and the fading parameters, but this is quite
expensive and prone to modelization errors. It can also be
estimated by the standard least-squares (LS) method using
the pilots and the corresponding observation samples only,
i.e. ĤP = YPS

#
P (where (.)# denotes the pseudo-inverse

3In most papers in the literature, this gain is considered for simplicity as
common to all antenna elements. [8] showed that it is quite true in the case
of ELAA, where the range values are higher than 1.2D, with D being the
aperture of the array. However, in the case of a small number of elements, the
gain should be considered as varying from antenna element to another due to
the varying distance [9, 10].

operator and index P refers to ’pilot’). This method requires
many pilots, significantly reducing effective data throughput.

Herein, we propose a semi-blind approach which would
exploit both pilots and data for the channel estimation. The
advantage, as will be illustrated later, is the reduction of the
pilot size and improvement of the estimation accuracy. More
precisely, we exploit the fact that, under the data model at
hand, the subspace spanned by the channel matrix coincides
with the one spanned by the L principal eigenvectors of
the data covariance matrix [13] (or equivalently, the signal
subspace spanned by the first L left singular vectors obtained
from the singular value decomposition of Y). This leads us to
write the channel matrix as:

Ĥ = UsQ̂ (6)

where Us is the N×L matrix whose columns span the signal
subspace and Q̂ is an unknown L × L matrix that can be
obtained from the pilots using the following LS criterion:

Q̂ = argmin
Q

||UH
s Yp−QSp||2 = UH

s YpS
#
P = UH

s ĤP (7)

As we can see, the pilots serve to estimate the L × L
matrix Q instead of directly estimating the N × L matrix
H which reduces significantly the number of parameters to
be estimated, and consequently the number of needed pilots,
since L ≪ N . Note also that the estimated channel Ĥ
corresponds to the projection onto the signal subspace of ĤP ,
i.e. Ĥ = UsU

H
s ĤP .

B. Divide and Conquer Strategy

In the ELAA case, the estimation of the signal subspace is
prone to high computational complexity and even to bias due
to the fact that the sample and antenna sizes might be of the
same order, an adverse situation known in the literature as the
high-dimension low-sample-size (HDLSS) context, e.g., [14].
To overcome this limitation, we propose to use a Divide and
Conquer strategy, e.g. [15, 16], and adapt it in this specific
situation to reduce the cost and get a parallelizable subspace
estimation method. More precisely, let split the observation
matrix in (1) into q submatrices as follows:

Yi = HiS+Wi, i = 1, · · · , q (8)

where, for simplicity, we assume N = Kq, K being an integer
value satisfying K = N/q > L and, using MATLAB notation,
Yi = Y(i : q : end, :), Hi = H(i : q : end, :).

Now, for every subsystem 1 ≤ i ≤ q, one applies, in a
parallel scheme if multiple computational units are available,
our semi blind subspace estimation algorithm which leads to:

Ĥi = Us,iU
H
s,iYp,iS

#
p , i = 1, · · · , q

= Ĥ(i : q : end, :) (9)

where Us,i is K×L matrix spanning the signal subspace of the
i-th subsystem, and given by the first L left singular vectors of
Yi. This DAC strategy allows us to reduce the computational
cost by a factor q2 and might improve the accuracy of the
estimation in the HDLSS case.
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An advantage of our channel estimation method, compared
to a parametric one based on the specular channel model,
is that we get the columns of Ĥ sorted ascendantly with
respect to the time delay of the path, so that the first column
corresponds to the shortest path, considered as LOS, allowing
simple angle and range estimation via the following fitting
technique, applied to the first column of Ĥ.

C. Second step: Angle and range estimation

Here, we compute the correlation between the entries of
the estimated channel vector ĥ0 such that we eliminate the
quadratic terms in the phase, as is usually done in Linear
Prediction (LP) based algorithms. Thus, from the channel
model in (2) and the approximation in (4), one can express:

r1
∆
= [ĥ0(−M)ĥ∗

0(M), . . . , ĥ0(−1)ĥ∗
0(1)]

T

≈ |β0|2[ej
4πd
λ M sin θ0 , . . . , ej

4πd
λ sin θ0 ]T (10)

from which, one can get an initial estimation of θ0 as

θ̂0 = arcsin

[
λ

4πd

1

(M − 1)

M−1∑
k=1

arg(r1(k)r
∗
1(k + 1))

]
(11)

where arg refers to the phase argument. It is worth noting
that each term arg(r1(k)r

∗
1(k + 1)), for k = 1, . . . ,M − 1,

gives an estimate of the quantity given by 4πd
λ sin θ0, without

ambiguity as long as d ≤ λ/4 and θ0 ∈ [−π
2 ,

π
2 ]. Here,

the quarter-wavelength inter-element spacing would create a
strong mutual coupling effect. However, its reduction, along
with the reduction in cost and complexity through the use of
sparse (coprime) array, will be presented in future work. Now,
from (5) we get an initial estimation of the range r0, using:

r̂0 =
πd2

λϕ̂0

cos2(θ̂0) (12)

where ϕ̂0 is obtained by using vectors r2 and r3 given by

r2 = [ĥ0(−M + n)ĥ∗
0(M), . . . , ĥ0(−1)ĥ∗

0(n+ 1)]T

≈ α2[e
−j2Mγ1 , . . . , e−j2(n+1)γ1 ]T (13)

r3 = [ĥ0(−M)ĥ∗
0(M − n), . . . , ĥ0(−n− 1)ĥ∗

0(1)]
T

≈ α3[e
−j2Mγ2 , . . . , e−j2(n+1)γ2 ]T (14)

with α2 = |β0|2ej(nω0+n2ϕ0), α3 = |β0|2e−j(nω0−n2ϕ0), γ1 =
ω0 + nϕ0 and γ2 = ω0 − nϕ0. ϕ̂0 is then computed as

ϕ̂0 =
1

2n
(γ̂1 − γ̂2) (15)

where γ̂1 and γ̂2 are obtained from r2 and r3 as

γ̂1 =
1

2

1

(M − n− 1)

M−n−1∑
k=1

arg(r2(k)r
∗
2(k + 1)) (16)

γ̂2 =
1

2

1

(M − n− 1)

M−n−1∑
k=1

arg(r3(k)r
∗
3(k + 1)) (17)

ϕ0 is usually too small to be directly estimated by other
combinations between the entries of ĥ0. That is why (15)

improves its estimation, thanks to the parameter n. An op-
timal choice of the latter is found experimentally in [7] as
n = round{0.6(M + 1)}, where round denotes the integer
round-off operation. Finally, we can refine the result with an
iterative LS fitting method. For this, we define the objective
function J(r, θ, β) and the associated optimization problem
as:

(r̂, θ̂, β̂) = arg min
r,θ,β

J(r, θ, β) = arg min
r,θ,β

||ĥ0 − βb(r, θ)||2

The gain β can be initialized as b(r̂0, θ̂0)
#ĥ0, where b(r, θ)

is a steering vector constructed following the near-field model
in (2). The parameters r and θ are then tuned by using
few iterations of the well-known Levenberg-Marquardt’s (LM)
method, and jointly updated at iteration i+ 1 as:(

r̂
(i+1)
0

θ̂
(i+1)
0

)
=

(
r̂
(i)
0

θ̂
(i)
0

)
−
(
γI2 +A(i)

)−1
(
▽rJ

(i)

▽θJ
(i)

)
(18)

where γ is an arbitrary damping coefficient that helps to insure
the non-singularity of the inverted matrix, A(i) is the Hessian
matrix of J (i), given by :

A(i) △
=

(
∂2J(i)

∂r2
∂2J(i)

∂r∂θ
∂2J(i)

∂θ∂r
∂2J(i)

∂θ2

)
(19)

The gain β is updated as β̂(i+1) = b(r̂
(i+1)
0 , θ̂

(i+1)
0 )#ĥ0.

IV. SIMULATION RESULTS

To assess the performance of our algorithm, we use for com-
parison the LP-based localization method called LPATS (LP
Approach with Truncated SVD and oblique projection) [7],
which shows better performance, at moderate to high SNRs,
than other existing localization methods such as the weighted
linear prediction method (WLPM) [6], the generalized ESPRIT
and MUSIC based method (GEMM) [17] and the covariance
approximation method for direction-finding (CAMDF) [18].
We omit here comparisons with pilot-based, polar-domain
methods using grid search approach, e.g., [2], due to their high
complexity and observed ill convergence when the initializa-
tion step is not accurate. Moreover, none of them consider
ISI, for convenience. We performed simulations with fixed
P = 32 pilot symbols, L0 = 3 propagation paths with a
delay spread L = L0, N = 357 antenna elements, a carrier
frequency fc = 50 GHz, an inter-element spacing d = λ/4,
and q = 7 submatrices for the DAC approach. The given
results (statistics) are averaged over 500 Monte Carlo runs. The
range values were chosen to be between Fresnel distance (FD)
and Rayleigh distance (RD), i.e. rl ∈ [0.62

√
D3/λ, 2D2/λ],

where D = 2Md is the aperture of the array. In this work, we
have set (r, θ) ∈ {(5m,−10°), (40m, 0°), (70m, 20°)} for the
three considered paths, with (FD ≈ 3.13m,RD ≈ 95.58m).
Here, we evaluate the accuracy of the different methods using
the normalized mean square error (NMSE). In addition, for
the LP-based method, ĤP is used to retrieve the right order
of the columns of Ĥ and to estimate complex gains. In Fig.
2, the estimated channel NMSE is plotted versus the sample
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size T . As can be seen, at low SNR, subspace estimation
is significantly improved with increasing T , but its accuracy
remains lower than that of LPATS. However, by reconstructing
the channel with the NF model as shown in III-C, when applied
on each column of Ĥ (referred to as Subspace + LM), we
outperform LPATS as shown in Fig. 2 (b).

(a) SNR=0 dB (b) SNR=10 dB

Fig. 2. NMSE of the estimated channel versus sample size T

Fig. 3 shows that the subspace method outperforms the
LPATS algorithm for localization purposes whatever T , mainly
due to the Levenberg-Marquardt refinement algorithm. It is
worth noting that the refinement step in the LPATS algorithm
is based on oblique projection in the multipath case. When
N is large, the LPATS algorithm shows a saturation effect,
because of small bias due to Taylor’s approximation in (4).

(a) estimated angle (b) estimated range

Fig. 3. NMSE versus sample size T for SNR = 0 dB

Fig. 4, corresponding to the NMSE of the estimated pa-
rameters versus the SNR, shows the improvement that we can
get with the subspace method, even for low SNRs, despite its
relative simplicity as compared to LPATS.

Finally, to test the robustness of the method, we set the
scatterers in the same direction but at different locations
(θ1 = θ2 = 0°) and (r1, r2) = (40, 70)m. The corresponding
results are shown in Fig. 5, where the subspace method still
performs very well, whereas LPATS algorithm does not. This
is due to the fact that our approach estimates first the channel
independently of the positioning parameters, which are the
estimated accurately using the LM technique. This is not the
case of parametric methods in general, where any ambiguity
in the location parameter estimation impacts the accuracy of
the estimated channel.

Regarding computational costs, expressed in terms of the
rough count of floating point operations (flops), the LPATS

(a) estimated channel

(b) estimated angle (c) estimated range

Fig. 4. NMSE versus SNR for T = 256 and P = 32

algorithm is made up of initialization and refinement steps,
with about O[N2T ] and O[N3NiL] flops, respectively, for Ni

(maximum) iterations in the second step. On the other hand,
the truncated SVD used in the subspace method costs about
O[NTL] flops in the worst case (without the reduction offered
by the DAC approach). The LM algorithm, for its part, requires
about O[NNi] flops. Finally, we remind the reader that the
estimation of the number of sources/paths is mainly based
on matricial decomposition techniques [19], so our approach
could exploit this decomposition whenever it is performed.

V. CONCLUSION

In this paper, we have proposed a new semi-blind approach
for channel estimation and source localization in near-field
communications with ELAA, considering ISI. When using a
divide-and-conquer strategy, the proposed subspace approach
is computationally competitive and relatively inexpensive com-
pared to existing parametric methods. Moreover, our channel
estimation method is ’robust’ in the sense that it does not rely
on a parametric propagation model in cross-field communica-
tions. After channel estimation, source localization is achieved
with a simple LS fitting method.
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