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Abstract—Accurate channel estimation is essential for reliable
communication in sub-THz extremely large (XL) MIMO systems.
Deploying XL-MIMO in high-frequency bands not only increases
the number of antennas, but also fundamentally alters channel
propagation characteristics, placing the user equipments (UE)
in the radiative near-field of the base station. This paper pro-
poses a parametric estimation method using the multiple signal
classification algorithm to extract UE location data from uplink
pilot signals. These parameters are then used to reconstruct
the spatial correlation matrix, followed by an approximation of
the minimum mean square error channel estimator. Numerical
results show that the proposed method outperforms the least-
squares estimator in terms of the normalized mean-square error,
even without prior UE location knowledge.

Index Terms—Terahertz wireless communications, short-range
communications, near-field channel estimation, spatially corre-
lated channels, multiple signal classification, minimum mean
square error.

I. INTRODUCTION

Terahertz (THz) wireless communication is gaining in-
creased interest in various applications, including space com-
munications, biomedical sensing, and industrial automation,
due to its potential advantages in terms of high bandwidth
and low latency [1]. Several studies have investigated the
transmission characteristics of wireless channels in the THz
and sub-THz frequency bands [2]. In [3] and [4], the authors
measured and modeled the path loss in sub-THz bands,
revealing that as the frequency increases, sub-THz channels
experience greater propagation loss, leading to rapid signal
power attenuation. Additionally, [5] measured the power delay
profile in the sub-THz band, showing that most line-of-sight
(LoS) measurements lack significant multipath components,
demonstrating the high directionality and narrow beamwidth
of THz channels. Based on these findings, the THz wireless
transmission is more likely to enable the short-range commu-
nication [6] by leveraging its strong LoS characteristics.

Considering the further expansion of array apertures in
6G base stations (BS), the user equipments (UEs) are likely
to fall within the near-field (NF) region of the BS in THz
short-range transmissions. In this region, the electromagnetic
wavefront exhibits spherical curvature, introducing spherical
phase variations across the array elements. These variations
are determined by both the angle and distance between the
array and the point source, fundamentally altering the channel
propagation characteristics. Consequently, conventional far-
field (FF) channel estimation methods [7], [8] become inade-
quate, necessitating the development of advanced NF channel
estimation algorithms that fully exploit the unique properties
of NF propagation.

A potential approach for the NF channel estimation is to
first recover the location parameters of the UE, and then
incorporate them into the parametric channel model to derive
the channel estimate. In [9] and [10], a two-stage multiple
signal classification (MUSIC) algorithm is proposed for uni-
form linear array (ULA)-based systems. In this approach,
the direction of arrival (DoA) of the UE is first estimated,
followed by the estimation of the distance between the UE and
the BS using the acquired angular information. Building upon
this, [11] extends the two-stage MUSIC algorithm to the NF
channel estimation based on uniform planar arrays (UPAs).
The estimated location parameters are then integrated into the
NF channel model to derive the channel estimates. However,
the aforementioned studies primarily focus on the parameter
estimation for NF channels in low-frequency bands, while the
applicability of parametric channel estimation approaches in
THz-band short-range communications is still unexplored.

In this paper, we propose a parametric channel estimation
method for the sub-THz NF channel based on the MUSIC
algorithm. We assume that multiple UEs periodically trans-
mit orthogonal training sequences so as to avoid multi-user
interference at the BS. Furthermore, the signal transmitted by
each UE arrives at the BS through a line-of-sight (LoS) path
with a specified spatial spread. During channel estimation, the
MUSIC algorithm is first applied to obtain key parameters
specifying the location of the UE relative to the BS. These
parameters are then used to reconstruct the spatial correlation
matrix of the NF channel. In doing so, we adopt mismatched
values of the angular and distance spreads, which are designed
large enough to capture (almost surely) all the received UE
signal energy. The reconstructed channel correlation matrix
is eventually exploited to implement an approximation of the
minimum mean-square error (MMSE) estimator of the UE
uplink channel. Numerical simulations in the sub-THz band
are conducted to evaluate the impact of transmission power,
selected spatial spreads, and other parameters on the proposed
solution. The results demonstrate that the proposed method
significantly outperforms the conventional least-squares (LS)
estimator and other existing methods in the sub-THz band.

II. SYSTEM MODEL

We consider a communication system operating over a
bandwith B at sub-THz frequencies (e.g., in the range of 0.1
THz) in which K single-antenna UEs communicate with a
BS equipped with an UPA, e.g., [12, Fig. 1]. The array is
placed in the yoz−plane of a three-dimensional space, where
a spherical coordinate system is defined, with φ being the
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azimuth angle, θ the elevation angle and r the distance. The
array has NH elements in each row and NV elements in each
column, resulting in a total of N = NH ×NV elements. The
horizontal and vertical inter-element spacing is δ, while vn is
the location of the n-th array element.

The Fraunhofer distance of the array is computed as
dF = 2D2/λ [13], where D =

√
(N2

V +N2
H)δ is the array

aperture length and λ is the wavelength. This distance is used
to distinguish between the FF and radiative NF regions of the
array [13]. When the array aperture becomes large, reaching
tens or even hundreds of times the wavelength, the expansion
of the Fraunhofer distance makes it highly probable that the
UEs would be located within the relative NF region of the
array. This is typically the case of sub-THz MIMO systems
for short-range communications [6]. As an example, consider
a half-wavelength-spaced array with size 0.15 × 0.075 m2,
and operating at 0.1 THz (i.e., λ = 0.003 m). This array
contains 5000 antennas in the configuration 100× 50, so that
we have dF = 18.75 m. In short-range communications (e.g.,
on the order of tens of meters), the UEs will likely be located
below dF . This implies that the FF approximation cannot be
used, and the exact propagation model for the channel must
be considered instead. This model is introduced next.

A. Channel Model

Based on [3]–[5], a reasonable assumption in sub-THz
short-range communications is that the signal transmitted by
each UE arrives at the BS array within a small solid angle
centered around the LoS path. We concentrate on a given UE
and denote by (φ, θ) the LoS angles from the UE to the array.
Assuming a conventional correlated Rayleigh fading channel,
the channel vector h ∈ CN can be modeled as [14]

h ∼ NC(0N ,R), (1)

which is fully characterized by the spatial correlation matrix
R. The latter is given by R = βA, where β = 1

N tr{R} is the
average channel power (capturing pathloss and shadowing),
and A is expressed as

A =

∫ r+△r

r−△r

∫ φ+△φ

φ−△φ

∫ θ+△θ

θ−△θ

f(r̃, φ̃, θ̃)

a(r̃, φ̃, θ̃)aH(r̃, φ̃, θ̃)dθ̃dφ̃dr̃, (2)

where (r, φ, θ) are the distance, the azimuth and elevation
angles of the considered UE, while the triplet (△r,△φ,△θ)
accounts for the corresponding distance and angular spreads.
Also, a(r̃, φ̃, θ̃) is the array response vector [15]:

a(r̃, φ̃, θ̃) =
[
1, ej

2π
λ (r̃1−r̃), . . . , ej

2π
λ (r̃N−r̃)

]T
, (3)

while r̃n and r̃ are the distances from the n-th array element
and the reference element to a point within the spatially spread
region. The distance r̃n can be computed as [15]

r̃n = r̃

√
1− 2kT(φ̃, θ̃)vn

r̃
+

∥vn∥2
r̃2

, (4)

where k(φ̃, θ̃) = [cos θ̃ cos φ̃, cos θ̃ sin φ̃, sin θ̃]T is the radi-
ation direction from the point to the array. Finally, f(·) is
the normalized spatial scattering function [14]. Unlike in FF

conditions, the array response vector in (3) is influenced not
only by φ̃ and θ̃, but also by the distance r̃.

B. Pilot Signal Model

We assume a block fading channel model where the channel
vectors remain static within a coherence block of τc channel
uses. Within each block, τp ≥ K uses are allocated for uplink
channel estimation. We assume that the UEs transmit with
power p and are separated by means of orthogonal pilot
sequences of length τp. Focusing on a generic UE k and
omitting the index for notational simplicity, the interference-
free observation vector y ∈ CN is given by [16]:

y = h+w, (5)

where w ∼ NC(0N , σ2
wIN ) with σ2

w = N0B/(pτp). The
MMSE estimate of h is [16]

ĥmmse = R
(
R+ σ2

wIN
)−1

y. (6)

Denoting by µ the rank of A, the eigenvalue decomposition
(EVD) of A yields

A = UΛUH, (7)

where Λ = diag{λ1, λ2, . . . , λµ} collects the µ non-zero
eigenvalues of A, while U = [u1,u2, . . . ,uµ]

T collects the
corresponding unit-norm eigenvectors. Plugging (7) into (6)
yields the following equivalent expression:

ĥmmse = UΛ

(
Λ+

σ2
w

β
Iµ

)−1

UHy, (8)

from which we see that the MMSE estimator requires knowl-
edge of both A (or its EVD decomposition) and {β, σ2

w}.
This problem is addressed next.

III. PARAMETRIC-BASED CHANNEL ESTIMATION

From (2), we see that, for a given array manifold and
spatial scattering model, the spatial correlation matrix R is
fully determined by the average channel power β, the UE
location (r, φ, θ) and the triplet of intervals (△r,△φ,△θ). In
practice, these parameters are not known. A possible solution
consists of estimating the location of the UE and fixing
sufficiently large values of the aforementioned intervals, say
(△̄r, △̄φ, △̄θ), which allows us to design a refined correlation
matrix R̄. Assuming △̄r > △r, △̄φ > △φ, △̄θ > △θ

and perfect estimation of (r, φ, θ), from [14, Lemma 1] the
subspace spanned by the columns of R̄ contains the subspace
spanned by the columns of R. Hence, the refined matrix R̄
contains all plausible channel dimensions and can replace R
in the MMSE estimator (8). As for the UE location (r, φ, θ),
it can be estimated by using the sample covariance matrix and
the MUSIC algorithm, as shown later.

A. Parametric-based Reconstruction of R

We begin by observing that R captures macroscopic effects
such as spatial channel correlation and average path loss.
Hence, it changes slowly compared to h and maintains
constant over τs coherence blocks, where τs can be at the
order of hundreds or more [17], [18]. For this reason, we
suppose that the BS has received the pilot signal in (5) over
M ≤ τs coherence blocks and denote by

y(m) = h(m) +w(m), m = 1, 2, . . . ,M, (9)
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TABLE I: System parameters.

Parameter Value
Carrier frequency f0 = 0.1THz

Wavelength λ = 3mm
Number of antennas NH ×NV = 64× 32

Antenna spacing δ = λ/2

Transmit power p = −4 dBm
Pilot length τp = 10

Number of observation vectors M = 10

Bandwidth B = 100 MHz
Noise power N0B = −84 dBm
UE position (r,φ,θ) = (4 m ,−20◦,−30◦)

Average channel power β = −90 dB
Angular spread of elevation angle ∆θ = 1.5◦

Assumed angular spread ∆̄θ = 5◦

the M observations, with the channel and noise vectors being
statistically independent for different values of m. Notice that
such observations can be obtained from pilots already used
for channel estimation in previous coherence blocks, so that
no extra pilots are needed. We use vectors {y(m)} to obtain
the sample correlation matrix as

R̂sample
y =

1

M

M∑
m=1

y(m)yH(m), (10)

and find a feasible method to get an estimate of parameters
(r, φ, θ) from R̂sample

y . Among several existing schemes, the
MUSIC is a powerful approach for estimating the parameters
of complex sinusoidal signals embedded in additive white
Gaussian noise [19]. The EVD of (10) can be expressed as

R̂sample
y =

N∑
n=1

ξnqnq
H
n = QyΣyQ

H
y , (11)

where {ξn|n = 1, 2, . . . , N} are the eigenvalues of R̂sample
y

and qn ∈ CN is the unit-norm eigenvector corresponding to
ξn. Furthermore, we have Σy = diag{ξ1, ξ2, . . . , ξN} and
Qy = [q1, . . . ,qN ]. Since the channel and noise vectors in
(9) are independent, R̂sample

y can be decomposed as

R̂sample
y = Qs

yΣ
s
y(Q

s
y)

H +Qn
yΣ

n
y (Q

n
y )

H (12)

based on the rank µ̂y = rank{R̂sample
y }1, where Σs

y ∈
Cµ̂y×µ̂y contains the µ̂y largest eigenvalues of R̂sample

y and
Qs

y ∈ CN×µ̂y spans the signal subspace of R̂sample
y formed

by the eigenvectors corresponding to these µ̂y largest eigen-
values. Furthermore, Σn

y ∈ C(N−µ̂y)×(N−µ̂y) is the diagonal
matrix composed of the remaining eigenvalues and Qn

y ∈
CN×(N−µ̂y) is the noise subspace, spanned by the eigen-
vectors corresponding to these smaller eigenvalues. Then,
recalling that R̂sample

y converges (almost surely) to the true
correlation matrix Ry =E{y(m)yH(m)} as M → ∞, and
that the channel vector h is orthogonal to the noise subspace

1In the simulations, we utilize ξµ̂y
≥ 10−2 to determine the rank of

R̂sample
y .

of Ry , we construct the MUSIC metric as [19]

P (r̃, φ̃, θ̃) =
1

aH(r̃, φ̃, θ̃)Qn
y (Q

n
y )

Ha(r̃, φ̃, θ̃)
, (13)

where a(r̃, φ̃, θ̃) is the search vector with r̃ ∈ [0, dF ],
φ̃ ∈ [−π/2, π/2] and θ̃ ∈ [−π/2, π/2]. The estimated UE
location (r̂, φ̂, θ̂) is then obtained through the following three-
dimensional spectral peak search

(r̂, φ̂, θ̂) = argmax{
(r̃,φ̃,θ̃)

P (r̃, φ̃, θ̃)} (14)

and used, together with the appropriately selected triplet
(△̄r, △̄φ, △̄θ), to compute the parametric-based correlation
matrix as R̄ = β̂Ā, where

Ā =

∫ r̂+△̄r

r̂−△̄r

∫ φ̂+△̄φ

φ̂−△̄φ

∫ θ̂+△̄θ

θ̂−△̄θ

f(r̃, φ̃, θ̃)·

a(r̃, φ̃, θ̃)aH(r̃, φ̃, θ̃)dθ̃dφ̃dr̃, (15)

and β̂ is an estimate of β, which is computed next.

B. Parametric-based Channel Estimator

Letting µ̄ = rank{R̄}, the EVD of the refined correlation
matrix R̄ takes the form

R̄ = β̂ŪΛ̄ŪH, (16)

where Λ̄ = diag{λ1, λ2, · · · , λµ̄} contains the µ̄ non-zero
eigenvalues of Ā, and Ū = [u1, · · · ,uµ̄] contains the eigen-
vectors corresponding to these eigenvalues. As mentioned
previously, when △̄r − △r ≥ |r̂ − r|, △̄φ − △φ ≥ |φ̂− φ|
and △̄θ−△θ ≥ |θ̂−θ|, the subspace spanned by the columns
of Ū covers the subspace spanned by the columns of the true
R. Hence, the parametric-based channel estimator based on
R̄ takes the form

ĥparametric = ŪΛ̄

(
Λ̄+

σ̂2
w

β̂
Iµ̄

)−1

ŪHy, (17)

where σ̂2
w is an estimate of σ2

w, which is computed next.

C. Estimation of β and σ2
w

We define Ūn ∈ CN×(N−µ̄) as the noise subspace of
R̄, spanned by the eigenvectors corresponding to the N − µ̄
smaller eigenvalues. Then, we exploit the observation vectors
y(m) in (9) to compute

x̄n(m) =
(
Ūn

)H
y(m), m = 1, 2, . . . ,M. (18)

Observing that
(
Ūn

)H
h is ideally zero, after substituting (9)

into (18) we obtain x̄n(m) =
(
Ūn

)H
w(m) = n(m), where

n(m) ∼ NC(0N−µ̄, σ
2
wIN−µ̄). An estimate of σ2

w is thus
given by

σ̂2
w =

1

M(N − µ̄)

M∑
m=1

∥x̄n(m)∥2. (19)

Finally, observing that

E
{
∥y(m)∥2

}
= N

(
β + σ2

w

)
, (20)

an estimate of β can be obtained as

β̂=
1

N
tr{R̂sample

y } − σ̂2
w, (21)
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Fig. 1: The NMSE vs. p for different estimators using the
simulation parameters provided in Table I.
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Fig. 2: The NMSE vs. M for different estimators using the
simulation parameters provided in Table I.

where σ̂2
w is given in (19). The estimates (β̂, σ̂2

w) are eventu-
ally used in (17) to evaluate ĥparametric.

IV. NUMERICAL RESULTS

We now evaluate the performance of the parametric channel
estimation scheme (17) in terms of the normalized mean
squared error (NMSE). To better reflect sub-THz channel
performance, we adopt parameters consistent with existing
studies: the channel power is set to β = −90 dB [4], the
transmit power to p = −4 dBm (except for Fig. 1) [20],
the uplink channel bandwidth B = 100 MHz [21] and the
noise power spectral density to N0 = −174 dBm/Hz [6].
The BS employs a UPA consisting of 64× 32 elements, with
an array aperture given by D =

√
(N2

V +N2
H)δ = 0.107

m. This configuration corresponds to a Fraunhofer distance
of dF = 7.680 m. We consider a specific UE located
at (r, φ, θ) = (4 m,−20◦,−30◦), which lies within the
radiative NF of the array. In the MUSIC algorithm, we
conduct a three-dimensional search over the space defined
by r̃ ∈ [0.5m, dF], φ̃ ∈ [−90◦, 90◦] and θ̃ ∈ [−90◦, 90◦]. The
search is performed with the step sizes of 0.5m for r̃ and 0.5◦

for both φ̃ and θ̃. For the refined R̄, the elevation angle spread
is set to ∆̄θ = 5◦, while the distance and azimuth spreads are
computed using △̄r = r̂(cos(θ̂ − △̄θ)− cos(θ̂ + △̄θ))/2 and
△̄φ = arctan(△̄r/(r̂ cos θ̂)). Unless otherwise stated, other
system parameters are listed in Table I.

The parametric estimator (17), labeled as ‘Param’, is com-
pared with the MMSE estimator (8), labeled as ‘MMSE’, as

0 2 4 6 8 10 12 14 16 18 20
6

7

8

9

10

11

12

Fig. 3: The chordal distance vs. M for different correlation
matrices using the simulation parameters provided in Table I.
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Fig. 4: The NMSE vs. △̄θ for different estimators using the
simulation parameters provided in Table I.

well as with three alternative methods:
• The LS estimator: This method directly sets the channel

estimate as ĥls = y, labeled as ‘LS’;
• The sample correlation matrix-based estimator, i.e.,

ĥsample =
(
R̂sample

y − σ̂2
wIN

)(
R̂sample

y

)−1

y, (22)

which is labeled as ‘Samp’;
• The isotropic correlation matrix-based estimator:

ĥiso = R̂iso
(
R̂iso + σ̂2

wIN

)−1

y (23)

with R̂iso being given by [14, Eq. (8)]. This estimator is
labeled as ‘Iso’.

Fig. 1 plots the NMSE of the different estimators as a
function of the transmit power p. As expected, the NMSE
of all estimators decreases as the transmit power increases,
reflecting the general trend that a higher SNR improves the
channel estimation accuracy. More importantly, compared to
existing schemes, the proposed estimator exhibits a significant
performance advantage, ranking second only to the conven-
tional MMSE estimator, which validates the effectiveness of
the proposed method.

Fig. 2 illustrates the NMSE as a function of the number
of received pilot vectors, M . The figure also indicates µ =
rank{R}. As observed, the proposed estimator is applicable
for any M ≥ 1 and naturally improves as M increases. The
most significant NMSE reduction occurs when M > µ, i.e.,
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M = 6, after which the performance gradually stabilizes,
indicating that additional pilot vectors provide only marginal
improvement.

Fig. 3 plots the chordal distance2 [16, Eq. (7.21)] between
the subspaces of the sample correlation matrix Qs

y and the re-
fined correlation matrix Ū with respect to the actual subspace
U. From Fig.3, we observe that although the chordal distance
of Qs

y decreases as M increases, it remains consistently
higher than that of Ū. This further explains the performance
advantage of ‘Param’ over ‘Samp’ as observed in Fig. 2.

Fig. 4 evaluates the impact of the selected elevation angle
spread △̄θ on the proposed estimator for values ranging
from 2◦ to 90◦. However, it is important to note that for
sub-THz band channels, the angular spread is smaller than
10◦. Here, we merely provide an example illustrating how
the proposed estimator varies with △̄θ. As expected, the
performance of the proposed estimator gradually deteriorates
as △̄θ increases. Notably, when the selected angular spread
approaches isotropy, i.e., △̄θ ≥ 30◦, the accuracy degradation
gradually decreases. When the selected △̄θ = 90◦, i.e., the
refined R̄ under the fully isotropic assumption, the proposed
estimator achieves the same accuracy of the one presented in
[14].

V. CONCLUSIONS

We considered the parametric NF channel estimation prob-
lem in the sub-THz band without any prior information. The
MUSIC algorithm was used to estimate the location of the UE
relative to the BS. Using the estimated location, the spatial
correlation matrix of the UE-BS channel was reconstructed
and incorporated into an approximation of the MMSE es-
timator to derive the NF channel estimate in the sub-THz
band. Numerical results showed that the proposed method
significantly outperforms the conventional LS estimator and
other existing methods. Given the computational complexity
of 3-D MUSIC, our future work will focus on developing
a low-complexity UE localization approach tailored for the
THz band. This method will be integrated with a paramet-
ric channel estimation framework to not only reduce the
computational overhead, but also to enhance the estimation
performance.
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