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Abstract—Distinguishing computer-generated (CG) images
from photographic (PG) images is an important task in multime-
dia forensics. Many deep learning-based methods have recently
been proposed for CG image forensics. However, the detection
performances of these methods still need to be improved, espe-
cially in terms of robustness against post-processing operations,
thus limiting their practical applicability. To tackle these issues,
we leverage the Vision Transformer (ViT) model, which excels
in capturing the global features of images, and design a High-
Frequency Feature Enhancement (HFFE) module to exploit
the discriminative frequency information between CG and PG
images. In our experiments, we evaluate the performance under
various commonly used post-processing operations. Moreover, we
test the performance in the presence of adversarial attacks, which
is a more challenging real-world case. The experimental results
demonstrate that our method achieves superior detection accu-
racy and significantly better robustness against post-processing
operations and adversarial attacks when compared with the state-
of-the-art methods.

Index Terms—Computer-generated images, robustness, adver-
sarial attacks, vision transformer, high-frequency feature en-
hancement.

I. INTRODUCTION

OWADAYS, computer-generated (CG) images, which
are often generated by using computer graphics tech-
niques (e.g., 3D rendering techniques [1], [2]) or advanced
deep learning algorithms such as autoencoders (AE) [3], [4]
and Generative Adversarial Networks (GANs) [5], [6], are
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difficult to recognize with the naked eye and may present
potential risks to social stability if used maliciously. More-
over, in practical scenarios, the CG images transmitted over
the Internet may undergo post-processing operations such as
compression and resizing, which challenge the robustness of
CG image detection. Therefore, it is of primary importance
to develop robust methods to distinguish CG images from
photographic (PG) images.

In recent years, deep neural networks, such as Convolutional
Neural Networks (CNNs), have been successfully used for CG
image forensics due to their powerful learning ability [7], [8].
Bai et al. [9] contributed a Large-Scale CG images Benchmark
(LSCGB) and further proposed a texture-aware network to
distinguish CG and PG images. Yao et al. [10] developed a CG
image detection method by utilizing transfer learning and con-
volutional attention. Meena et al. [11] proposed a two-stream
network that utilizes RGB color features and high-frequency
noise features obtained by Steganalysis Rich Model (SRM)
filters [12]. Gangan et al. [13] employed Multi-Colorspace and
EfficientNet [14] for the task of detecting CG images. Chen
et al. [15] designed a forensics contrastive learning framework
to adaptively learn intrinsic forensics features for the detection
of CG images.

Despite advances in CNN-based approaches for CG image
forensics, their performance will be degraded greatly when
detecting post-processed CG images, limiting their practical
applicability in the real world. In addition, limited research has
been done to address the more challenging practical scenario,
i.e., detecting the CG images in the presence of adversarial
attacks. In CNN-based approaches, the inherent characteristic
of limited receptive fields results in an overemphasis on local
features such as texture and edges. Since all the regions of a
CG image are synthesized, a wide range of artifacts that span
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the entire image can be created in the computer generation
process. Therefore, the global features are also crucial in CG
image forensics for providing essential information regarding
the artifacts of generation. Vision Transformer (ViT) [16] has
recently emerged as a competitive alternative to CNNs and has
increasingly been applied to the image forensics tasks, such as
the detection of splicing [17], deepfakes [18], and recaptured
screen images [19], etc. Compared with CNNs, the cascaded
self-attention modules in ViT can capture long-range feature
dependencies and reflect complex spatial transformations to
capture the global features. Furthermore, while CNNs exhibit
vulnerability to adversarial attacks, ViT demonstrates better
robustness against adversarial attacks [20]-[22].

In this work, we propose a ViT with high-frequency feature
enhancement for CG image forensics. We design a High-
Frequency Feature Enhancement (HFFE) module to exploit
the high-frequency features, which are one of the key features
to differentiate CG images from PG images. The input images
are first processed by the HFFE module and then fed to
the ViT module. The HFFE module mainly comprises a
convolutional block and a high-frequency feature extractor,
which can simultaneously extract distinct local features and
frequency features from the input images. The high-frequency
feature extractor is designed to successively process the images
through Fast Fourier Transform (FFT), Gaussian high-pass
filtering, and Inverse Fast Fourier Transform (IFFT). In Fig. 1,
we show the high-frequency features obtained from original
and post-processed images by SRM filters used by Meena
et al. [11] and the proposed high-frequency feature extractor,
respectively. It can be seen that the features extracted by SRM
filters are more sensitive to post-processing operations, while
the proposed extractor achieves better robustness.

Our main contributions are as follows: (1) A novel ViT
with High-Frequency Feature Enhancement (HFFE) module
is proposed for robust CG image forensics. (2) We consider
a challenging practical scenario in which CG image detec-
tion is conducted in the presence of adversarial attacks. (3)
Experimental results demonstrate that the proposed method
achieves strong robustness against post-processing operations
and adversarial attacks.

II. PROPOSED METHOD
A. Overall network architecture

The architecture of our proposed method is shown in Fig.
2. Firstly, the input images go through the HFFE module
to be converted into feature map patches. These patches are
then summed, flattened, and mapped to a series of token
embeddings. Then, the token embeddings pass through the
transformer encoder. Additionally, instead of using the clas-
sification (CLS) token to gain the classification features, we
use global average pooling which is frequently employed to
integrate visual features from different spatial locations to
guarantee translation invariance. Finally, after global average
pooling, the resulting output from the transformer encoder is
fed to the classifier. In this work, the ViT-B/16 model [16]
serves as the baseline model.
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Fig. 1. Images taken from the LSCGB [9], as well as their high-frequency
features obtained through SRM filters and the proposed high-frequency
feature extractor under different post-processing operations, namely JPEG
compression (quality factor (QF) = 50) and Gaussian noise addition (zero
mean and o = 1), with triple brightness.

B. High-Frequency Feature Enhancement

In order to fully mine the discriminative operties between
CG and PG images and improve the robustness of the detector,
we designed the HFFE module. As shown in Fig. 2, the HFFE
module comprises a convolutional block for extracting local
feature maps, a high-frequency feature extractor for extracting
high-frequency feature maps, and two convolutional layers for
converting these feature maps into patches.

In the convolutional block, we leverage the advantage of
convolution operations to extract local features, because ViT
is not as proficient as CNNs in capturing local features such as
texture and edges in shallow layers [23]. These local features
also contribute to CG image forensics.

The convolutional block consists of a convolutional layer, a
batch normalization layer, and a maximum pooling layer. For
the input image € R *W >3 the output of the convolutional
block can be denoted as:

x; = MaxPool (BN (Convl (x))) (1)

where z; € R*7*C (H,W) is the size of the input image,
(1,J) is the size of the output of the convolutional block, and
C is the number of channels.

We design a high-frequency feature extractor to extract
robust high-frequency features. As shown in Fig. 2, an input
image is split into three color channels, i.e., R, GG, and B.
For ky, color channel f* (x,y) of size HxW, the process of
extracting high-frequency feature is as follows: First, f* (z,y)
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Fig. 2. The network architecture of the proposed method. ”@®” represents an addition, ”L” represents the number of blocks and we set its value to twelve.

is transformed from the spatial domain to the frequency
domain by using Fast Fourier Transform (FFT). It can be noted
as:

H-1W-1
F* (u,v) = Z Z £* (z,y) - o—i2m (443 )
=0 y=0

where (x,y) and (u, v) are the coordinates of the image in the
spatial domain and frequency domain, respectively. Second,
a Gaussian high-pass filter (GHPF) formulated as Eq. 3 is
applied to the image for filtering in the frequency domain.

p2(u,v)

H(u,v) =1—e 2007 3)

where Dy € R is the cut-off frequency and D (u,v) is the
distance from the frequency point (u,v) to the center of the
spectrum. The filtering result can be noted as:

G* (u,v) = F* (u,v) - H (u,v) )

Finally, the frequency domain information is transformed back
to the spatial domain information by using Inverse Fast Fourier
Transform (IFFT). It can be noted as:

H-1W-1
vy

zy (z,y) = ﬁ Z Z G* (u,v) - 2 (4 +i) (5)
u=0 v=0

The high-frequency features are extracted from each color
channel and the final output is xj, € RT>XWx3,

Both the output of convolutional block z; and the output
of high-frequency feature extractor x; are split into patches
of size (P, P) and added together to the new patches z, €

H w 2
R7 %< (P*X3) It can be noted as:

zp = Conv2 (z;) + Conv3 (zp,) (6)

Then the feature map patches x, are flattened and mapped
to a series of token embeddings x; € RV*P, where N =
HW/P? and D = P? x 3 are the number and the size of
token embeddings, respectively.

C. Transformer Encoder

The transformer encoder consists of twelve stacked ViT
blocks, where each block comprises two sub-layers: Multi-
Head Self-Attention (MHSA) and a Feed-Forward Network
(FFN), also referred to as a Multi-Layer Perceptron (MLP).
Layer normalization (LN) [24] is applied before each sub-
layer, with a residual connection surrounding them. In the
MHSA layer, token embeddings x; € RM*P are linearly
transformed into gkv spaces (i.e., queries Q € RN*P,
keys K € RN*P and values V € RNM*P). The token
embeddings are split and fed to self-attention modules for
twelve executions in parallel. The resulting outputs of the
self-attention modules are concatenated and projected. In the
MLP layer, element-wise operations are performed, which are
applied individually to each token. Specifically, it first expands
the embedding dimension from 768 to 3072, followed by a
non-linear activation GELU [25], and then projects it back
to 768. For the MHSA, by calculating the dot product, the
similarity between different tokens can be calculated to obtain
long-range and global attention. The corresponding values
of V are linearly aggregated. For the MLP, each token is
performed dimension alteration and non-linear transformation,
thereby enhancing the representation ability of the token.

III. EXPERIMENTS

A. Experiment Setup

The benchmark database used in this study is the LSCGB
proposed by Bai et al. [9], which is the state-of-the-art database
for CG image forensics. The LSCGB contains 71,168 CG im-
ages and 71,168 PG images. All images are randomly divided
into training set, testing set, and validation set according to
the same ratio in [9] to 7:1:2. The input images are conducted
the same processing as the method in [9]. The experiments
are carried out using PyTorch library on a single NVIDIA
GTX3090. The total number of training epochs is set to 50.
The Adam [26] is used as the optimizer, and the batch size is
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set to 32. For CNN-based methods and our ViT-based method,
the learning rate is initialized to 0.0001 and 0.005 respectively,
and scheduled to decrease by 10% every five epochs.

B. Evaluation of Robustness

In this section, we evaluate the robustness of our proposed
method against various post-processing operations and adver-
sarial attacks. We consider four common post-processing op-
erations with different parameters: JPEG compression (quality
factor (QF) € {90, 80, 70}), image scaling (up by 20% or down
by 20%), image blur (median blur and mean blur, kernel size
€ {3 x 3}), and Gaussian noise addition (zero mean and o €
{1,1.5}). We also consider four common types of black-box
adversarial attacks, including ST [27] (the translation in any
direction as a percentage of the image size: p € {5%, 10%}),
HSJA [28] (iterations i € {25,50}), SimBA [29] (pixel-based,
100 iterations and ¢ € {0.5,1.0}), SA [30] (100 iterations and
e € {5,10}).

We compare our method with the state-of-the-art methods
[9] [10] [11] [15]and ViT [16]. The testing results are reported
in Table I. It can be observed that the basic ViT can achieve
satisfying performance and our proposed method further im-
proves the performance. Our method achieves an accuracy of
95.63% on the original testing dataset, which is 0.62% higher
than Chen et al. [15] and approximately 5% higher than the
other methods. Under various post-processing operations and
black-box attacks, our method has an average accuracy close
to 90%, which outperforms others in the comparison by more
than 10%. Specifically, compared to the accuracy on the orig-
inal dataset, our method shows an average accuracy decrease
of 3.43%, 0.80%, 6.62%, and 0.87% under four types of post-
processing operations respectively. In comparison, the best-
performing method among others, as demonstrated by Chen
et al. [15], suffers a larger decrease in average accuracy of
12.38%, 3.14%, 7.15%, and 5.96% under the same conditions.
Our method achieved robust performance in all four post-
processing operations. The performances of our method rank
second under Mean Blur post-processing and are lower than
Chen et al. [15]. This may be because Chen et al. [15] use data
augmentation in their training, resulting in better performance
in some post-processing. However, our method still leads
the way in all post-processing robust tests Furthermore, our
method yields a decrease of 3.46%, 9.64%, 3.50%, and 4.13%
under four types of black-box attacks. Meanwhile, the method
proposed by Bai et al. [9], shows a decrease of 13.22%,
22.27%, 21.25%, and 13.77%. These results demonstrate the
superior robustness of our method against post-processing
operations and adversarial attacks compared with other CNN-
based thods. It is noted that our method demonstrates better
robustness against adversarial attacks compared to ViT. This
could be because the images are first converted into feature
maps in our method, rather than inputting image patches in
conventional ViT. Thus, our method is relatively insensitive
to adversarial attacks which target pixel-level perturbations on
the image.

TABLE I
THE DETECTION ACCURACY UNDER POST-PROCESSING OPERATIONS
AND ADVERSARIAL ATTACKS

Methods— Bai Yao Meena Chen | ViT Ours
Attacks | [9] [10] [11] [15] [16]

Origin. 91.73 9126 90.82 95.01 | 94.88 95.63
JPEG QF=90 84.28 83.17 82.69 86.33 | 90.76 93.61
JPEG QF=80 78.89 7829 76.84 8220 | 88.31 92.12
JPEG QF=70 76.24 7591 7457 80.71 | 86.45 90.87
Scaling Up 20% 89.36 87.78 8734 94.01 | 93.98 95.06
Scaling Down 20% | 88.04 88.16 86.42 89.18 | 93.45 94.61
Median 3x3 71.74 70.88 7045 88.96 | 88.13 89.59
Mean 3x3 67.83 6639 65.83 94.44 | 8759 88.43
Noise o=1 84.55 8273 8192 89.59 | 93.78 95.09
Noise o=1.5 82.64 81.71 8137 8851 | 93.43 94.43
ST p=5% 8359 8242 79.74 8125 | 91.52 93.11
ST p=10% 79.27 7845 7591 7734 | 89.16 91.23
HSJA i=25 75.65 7643 7432 7575 | 87.18 89.29
HSJA =50 68.57 6991 67.71 6842 | 80.54 82.68
SimBA ¢=0.5 7494 72770 7138 82.89 | 88.79 92.89
SimBA e=1.0 7231 69.75 6892 79.57 | 87.43 91.38
SA e=5 81.57 80.73 79.25 62.16 | 91.01 92.77
SA =10 80.65 78.86 7791 59.38 | 87.71 90.23

TABLE I
ABLATION EXPERIMENTS ON THE PROPOSED METHOD

Methods— ViT w/o w/o Ours
Scenarios |, (Baseline) High-Freq. Conv. Block

Origin. 94.88 95.42 95.36 95.63
JPEG QF=90 90.76 91.20 92.79 93.61
JPEG QF=80 88.31 89.56 91.65 92.12
JPEG QF=70 86.45 88.74 89.82 90.87
SimBA €=0.5 88.79 89.38 92.43 92.89
SimBA e=1.0 87.43 87.94 91.17 91.38

C. Ablation Study

In this section, we assess the convolutional block (Conv.
Block) and the high-frequency feature extractor (High-Freq.)
in terms of robustness against post-processing operations and
adversarial attacks. We test their performances on the original
dataset, the dataset edited by JPEG compression (quality
factor (QF) € {90, 80, 70}) and SimBA [29] (pixel-based, 100
iterations and € € {0.5,1.0}), respectively.

As shown in Table II, the accuracy of the original dataset
decreases without the high-frequency feature extractor or
the convolutional block. Without the high-frequency feature
extractor, the average accuracy declines by 2.37% and 3.50%
under JPEG compression and SimBA [30], respectively. Sim-
ilarly, without the convolutional block, the average accuracy
witnessed a decrease of 0.78% and 0.34% under the same con-
ditions, respectively. The performance degradation confirms
that utilizing the high-frequency feature extractor or convolu-
tional block effectively improves the model’s performance.

Moreover, we apply t-SNE [31] to visualize the feature
distribution of both the baseline (i.e., ViT) and our model
in several experimental scenarios. As shown in Fig. 3, our
model significantly minimizes the overlap area between the
features of CG and PG images in all experimental scenarios
when compared with the baseline. The visualization of these
reduced-dimensional features further supports the superiority
of our model.
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Fig. 3. T-SNE feature distribution visualizations of baseline and our model.

IV. CONCLUSION

In this work, we propose a novel ViT with High-Frequency
Feature Enhancement (HFFE) module for CG image forensics.
The advantage of ViT in capturing global features contributes
to distinguishing CG images from PG images, and the HFFE
module which exploits the discriminative frequency informa-
tion further improves the detection performance. Extensive
experiments have shown that our method outperforms state-of-
the-art methods, especially in terms of robustness against post-
processing operations and adversarial attacks. In further work,
the proposed framework will also be extended and modified
to tackle more image forensics applications, such as image
tampering detection.
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