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Abstract—With the rapid advancements in Al-generated im-
agery, particularly diffusion-based models, detecting synthetic
human faces has become increasingly challenging. In this paper,
we introduce a synthetic face detection framework that leverages
two complementary features: (i) UV textures extracted using 3D
Morphable Models (3DMM) and (ii) surface frames capturing ge-
ometric structures. These modalities are fused using both feature-
level and score-level fusion strategies to enhance generalization
to unseen generators and robustness against post-processing
operations. Experimental evaluations on diverse datasets demon-
strate that our proposed method outperforms single-modality and
CLIP-based approaches and provides improved generalization
across different diffusion generative models, as well as improved
robustness against common and strong processing operations.

Index Terms—Synthetic image detection, 3D Morphable Mod-
els, Surface frame, Robust deepfake detection.

I. INTRODUCTION

Over the past decades, social media have enabled fast
communication and sharing of multimedia contents, leading to
a significant increase in their production and accessibility. This
has also been possible thanks to the recent advancements in
deep learning techniques. Neural Networks (NNs) can be used
for a variety of tasks [1], including changing the identity of a
person in an image or video by swapping its face with another
subject, cloning a person’s voice, or generating completely
synthetic images, videos, or audio clips through simple text
prompts. These last developments have been possible in great
part thanks to Diffusion Models (DMs) [2], which have
emerged as a revolutionary technique.

However, the availability of deep learning tools allowed
malicious actors to easily spread manipulated media content,
with serious consequences [1], [3] in terms of disinformation
campaigns, identity theft, revenge porn, etc. There is an urgent
need for tools that identify if a media is synthetically generated
or, in other words, a deepfake. This is the main goal of the
multimedia forensics community, which, in recent years, has
proposed several deepfake image detectors [1], [4]-[6].
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In this paper, we specifically focus on detecting diffusion-
based high-resolution images of fully generated human faces,
which, from now on, we define for simplicity as deepfake im-
ages. Since DMs are available in diverse network architectures,
one of the requirements for deepfake detectors is strong gener-
alization ability, i.e., to detect a deepfake independently from
the specific DM used for generating the image under analysis.
Furthermore, synthetic images might also undergo several
postprocessing operations. For instance, while uploaded on a
social network, they might be processed with downscaling,
compression, color processing, etc. All of these operations
might alter the subtle forensic traces the detector needs to
classify the image as a deepfake, undermining its performance.

To tackle the challenges posed by generalization and post-
processing, our work introduces a synthetic face detection ap-
proach that leverages two different data modalities: (i) the fa-
cial textures extracted via 3D Morphable Models (3DMMs) [7]
and (ii) the geometric structure of the image extracted via local
Surface Frames (SFs) [8]. The rationale behind these features
is that they provide a richer representation of the forensic
content of the image, allowing at the same time to generalize
better over different DM architectures and being more robust
to post-processing operations than standard RGB inputs.

We thoroughly evaluate detectors that use 3DMM textures
and SFs as single input modalities and propose different fusion
mechanisms to exploit the information in both. Then, we
compare these tools against techniques using standard RGB
as input. In particular, we test our proposed solutions against
state-of-the-art tools based on Contrastive Language Image
Pretraining (CLIP). We run all our experiments in a cross-
dataset scenario, i.e., considering generators never seen during
training, and measuring the performances against common
post-processing operations that images can experience in the
wild. Our results show that the proposed detection methods
presents better generalization and robustness to the standard
RGB baseline and the current state of the art.

II. METHODOLOGY

Problem formulation. In this paper we address the problem
of synthetic face detection, i.e., given a query image of a face,
to determine whether the image is real or a deepfake. State-
of-the-art approaches tackle the problem by training NNs to
provide a likelihood score s indicating whether the image is
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Fig. 1: Proposed input modalities. Given a face (left), 3DMM:s allow to project
its 3D mesh on a 2D plane (2nd column). We exploit this information, together
with that of the colors, to extract the UV textures (3rd column). Last column
shows the SF (z-component) extracted from the same face.

synthetic (s > 0) or not (s < 0). More formally, s = f(I),
where f(-) is the NN-learned function and I the network input,
generally being a H x W x 3 RGB face image.

To increase robustness and generalization, we propose to
work with different input modalities from standard RGB im-
ages, namely i) the UV texture extracted from the face image
and ii) the Surface Frame (SF). Our intuition is that these
modalities bring additional and complementary information to
the RGB input, and we can exploit this information by fusing
them to boost the performance of NN-based detectors. In the
following, we provide more details on our method.
3D Morphable Models and UV textures. In computer graph-
ics, 3D Morphable Models (3DMMs) are statistical models
used to represent the 3D shape and appearance of faces [7].
In particular, 3DMMs enable complex tasks such as 3D facial
reconstruction from a single facial image (see second column
of Fig. 1). Furthermore, 3DMMs ensure that each vertex of
the reconstructed 3D face retains the same semantic meaning
across several different facial images (e.g., the i-th vertex
represents always the tip of the nose on all faces).

With 3DMMs, it is also possible to map the surface of the
3D face onto a 2D plane to create the so-called UV texture
image, defined as Iy, with the exact size of the original
analyzed image I, but where each pixel corresponds to a
specific point of the 3D surface. For instance, in Iy, facial
features such as the nose tip, the eyes and the mouth are
mapped into the same UV coordinates for every input face,
independently of the facial expression or subject pose. This
alignment makes UV textures a powerful tool for conducting
a detailed analysis of facial datasets. The third column of Fig. 1
provides an example of Iy .

In our work, we propose to exploit UV textures for syn-
thetic face detection. Indeed, we believe the capability of UV
textures of ensuring consistency between semantic locations
across different faces might act as a sort of “regularization”
term for forensic detectors. This could lead to better general-
ization and robustness over many post-processing operations
that could alter the presence of more subtle forensic traces.
Surface frames. The Surface Frame (SF) [8] is a per-pixel
image representation that analyses the geometry of the content
in terms of surfaces and objects depicted within the scene.
Formally, a SF F(i) at each i-th pixel is a 3 x 3 matrix
of mutually orthogonal unit vectors, i.e., normals, tangents,
and bitangents, defined as F(i) = [n(i),t(¢),b(7)], with
n(i),t(i),b(i) € R? in the x-y-z space.

A recent study [9] has shown that, while capturing an image,

all the inherent scene elements, e.g. illumination, shadows, and
reflections, along with the camera noises, constitute low-level
details that permanently affect not only the RGB pixel values
but the SFs as well. This information can be used for forensic
purposes. For example, camera SFs have been used effectively
to detect deepfakes in both scenarios of completely generated
images [10] or synthetically inpainted pictures [9], [11].

Inspired by the work presented in [10], our paper considers
SFs for the deepfake image detection task. In particular,
we consider the z-component of the local SFs, defined for
simplicity as Isr. We recall that, for each i-th image pixel,
the z-component of the entire SF is a three-element vector,
i.e., n.(¢), t.(7), b.(¢)]. To obtain Isr, we concatenate these
elements for each pixel, constructing Isr as a 3 x H x W
matrix, where H and W are the height and width of the input
image, respectively. Finally, we rescale these components for
each pixel in the range [0, 255]. This way, Isr determines a
single geometrical image representation at a pixel level. Fig. 1
provides an example of the Isr extracted from a human face.
Fusion strategies. While the UV textures and SFs modalities
can be used as alternatives to standard RGB inputs in NN
architectures, an intriguing possibility is to fuse their informa-
tion. This fusion could lead to even greater improvements in
robustness to in-the-wild post-processing operations and better
generalization to unknown generation techniques. To this end,
we consider two approaches to fuse these features together,
namely Fusion Feature (FF) and Fusion Score (FS).

Fig. 2 provides a graphical overview of the proposed fu-
sion pipelines and the corresponding training strategies. Both
pipelines begin with a modality extraction module that extracts
the UV texture and the SF from an input RGB image I.
This information is then processed in parallel by identical NN
backbones. The two approaches differ according to how these
backbones and the features they extract are fused together to
produce the final score image s:

o For the FF approach (see Fig. 2a), the two parallel
streams extract deep features, which are concatenated and
fed into a Multi-Layer Perceptron (MLP) that generates
the final detection score. During training, weights of the
MLP and the two backbone networks are jointly updated
until the entire pipeline converges.

o For the FS approach (see Fig. 2b), training is carried
out in two stages. First, the two branches are trained
separately on the same dataset. Once trained, a Machine
Learning (ML)-based fusion module is trained to combine
the detection scores produced by the two branches, i.e.,
syv and sgp for the UV textures and SFs respectively.
During the training of this final module, the two NN
backbones weights are frozen and no more updated.

III. EXPERIMENTAL SETUP

Feature extraction. To extract UV textures and SFs, we rely
on state-of-the-art solutions based on NNs. In particular, we
use 3D Dense Face Alignment Version 3 (3DDFA-V3) [12]
to reconstruct the 3D faces from the input images and then
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Fig. 2: Considered fusion approaches. FF trains both the UV texture and
SFs backbone networks together with a MLP to predict the final deepfake
score s. The FS trains separately the UV texture and SFs networks to predict
separate scores, i.e., syyv and sgp, respectively. Then, after freezing the two
backbones, it trains a ML-based module to fuse the two into a final score s.

extract the UV textures. For SF extraction, we employ an
encoder-decoder model named UpRightNet as described in
following [8]. In both cases, the input image I must be resized
to the resolution required by the respective feature extractors:
224 x 224 for 3DDFA-V3 and 288 x 384 for UpRightNet.
Dataset. The training set is composed of the FFHQ [13]
dataset for the real faces and the recently released SFHQ-
T2I [14] dataset for the fake faces. FFHQ is a well-known
dataset of pristine human faces with size 1024 x 1024 pixels.
SFHQ-T2I contains around 120K high-quality 1024 x 1024
curated face images, created through several text-to-image dif-
fusion models, i.e., FLUX1.pro, FLUX1.dev, FLUX1.schnell,
Stable Diffusion (SD)-XL, and DALL-E 3. To balance real and
synthetic samples equally, we randomly select 60K images
from both FFHQ and SFHQ-T2I for a total of 120K samples.
Since the number of images per generator is not balanced in
SFHQ-T2I, we select the samples from the two generators with
more representation: 30/ images produced by FLUX1.schnell
and 30K images generated by SD-XL. We consider a training-
validation split ratio of 5 : 1.

In the testing phase, following a standard procedure in the
deepfake image detection task [15], we evaluate our methods
in the challenging scenario of cross-dataset generalization,
meaning testing against synthetic generators that were not seen
during training. We randomly pick 1K images for each of the
remaining available generators in SFHQ-T2I, i.e., DALL-E 3,
FLUXI.dev, and FLUXI.pro. In addition, we also generate
about 1K new samples 512 x 512 pixels wide with the
following text-to-image generation techniques: SD-1.5, SD-
2.1, SD-XL1, and SD-XLTurbo. Notice that, even if SD-XL
generator has been seen in training, the SFHQ-T2I dataset does
not specify which version of SD-XL was used to generate the
images. Our test set includes both versions SD-XL1 and SD-
XLTurbo, allowing us to investigate the generalization capabil-
ities of our detectors. Moreover, we also select completely new
text prompts from those used in SFHQ-T2I. Finally, as real

images, we consider the samples presented in [16], consisting
of around 1K real human faces with size 600 x 600 pixels.
The final test set comprises about 8K real and fake images.
Networks and training details. We employ a ResNet18 [17]
pretrained on ImageNet-1K as the backbone for all our ana-
lyzes. For the FF approach, we concatenate the two embedding
vectors of size 128 obtained by the two parallel branches.
The MLP classifier is a fully connected layer that takes as
input the fused features and outputs the final detection score
s. We train all the networks (i.e., the two ResNetl8 and
the MLP module) using Adam [18] for a maximum of 100
epochs with a learning rate A = le™3. We train with cross-
entropy loss, using early stopping with patience of 10 epochs,
saving the model with the lowest validation loss. For the FS
approach, as explained in Section II, we first train the two
modality branches independently using the setup illustrated
above. After the branches converge, we train a ML-based
module on the scores extracted from the training and validation
set. In particular, we employ a simple perceptron, i.e., a linear
classifier trained with the Stochastic Gradient Descent (SGD)
algorithm. We denote this method as FS-1. In this stage, we
also consider a simpler approach based on the mean of the
scores of the two branches, denoting this method as FS-2.

It is important to note that we do not include any training

augmentations in our pipeline. We purposely do this to eval-
uate the inherent robustness and generalization capabilities of
the investigated features.
Comparison methods. To prove the effectiveness of the
proposed features, we also train a ResNet18 providing as input
directly the RGB images. We follow the same training strategy
as the other single-modality networks, with the only exception
of the learning rate. We set A\ = le™* as we found it to
converge better and achieve better accuracies.

Finally, we also consider some recent state-of-the-art base-
lines, namely [4] and [5]. Both approaches use a frozen Visual
Transformer [19] pretrained on the CLIP task [20] as a feature
extractor and then fine-tune the network’s last layer to predict
the likelihood scores s. For our experiments, we take the
models’ weights provided by the original authors. Following
the original papers’ procedure, we then fine-tune only the
last layer of the networks for 100 epochs on our training
dataset using the AdamW [18] optimizer with a A = le~* and
reducing the learning rate on the plateau of the cross entropy
loss function by a factor 0.1 with a 10 epochs patience.

As done before, the baselines are trained without any
training augmentations. We do this with the specific goal of
comparing the robustness and generalization of our proposed
solutions with respect to those proposed in the literature.

IV. RESULTS

In the following, we present the results of our experimental
campaign. As usually done for the deepfake image detection
task, we use the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) and the Balanced Accuracy
(BA) evaluated by thresholding at O the logit scores (BA@0Q)
as comparison metrics.
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TABLE I: BA evaluated at threshold 0 (%) and AUC for the cross-set experiments. In bold, the best BA per row.

Proposed methodologies

State of the art

Generator | RGB | UV texture  Surface frame FS-1 FS-2 4] [5]

DALL-E 3 94.90/1.00 96.00/0.99 92.90/0.99 97.90/1.00 96.60/0.97 97.70/1.00 83.30/0.98 92.55/0.98
FLUX1.dev 88.80/1.00 | 98.25/1.00 96.90/1.00 99.55/1.00 97.00/0.97 97.25/1.00 81.55/0.93 94.65/0.99
FLUX1.pro 99.40/1.00 | 98.45/1.00 93.60/1.00 99.85/1.00 97.00/0.97 98.60/1.00 81.90/0.93 94.80/1.00
SD-1.5 75.10/0.85 | 73.65/0.90  81.10/0.89  64.75/0.90 83.25/0.83  80.00/0.93 | 82.45/0.95  77.85/0.90
SD-2.1 78.70/0.89 | 81.30/0.94 84.15/0.92 65.35/0.92 89.35/0.89 86.30/0.96 82.30/0.94 92.00/0.98
SD-XL1 92.89/0.99 | 96.12/0.99 92.75/0.99 95.70/1.00 96.50/0.97 97.42/1.00 | 83.85/0.97 93.51/0.99
SD-XLTurbo | 86.15/0.94 | 89.10/0.97 89.50/0.96 69.65/0.96 93.85/0.94 92.90/0.98 80.50/0.90 67.45/0.82
Average ‘ 87.99/0.95 ‘ 90.41/0.97 90.13/0.96 84.68/0.97 93.36/0.93 92.88/0.98 ‘ 82.26/0.94 87.54/0.95

Cross-set results. In Table I, we present a comparison of AUC
and BA @0 across all evaluated detection methods, with results
broken down by the specific generator used in the test set.

1) Single modalities: As a first experiment, we compare
all the single-modality networks, including RGB and our
proposed features, UV texture and SF. The results are shown
in the first three columns of Table I, from left to right. Fo-
cusing on each individual generators dataset, SF demonstrates
the strongest generalization across all generation techniques,
consistently achieving a BA above 80%. However, all three
modalities exhibit a noticeable drop in performance when
analyzing samples generated by SD-1.5 and SD-2.1. Notably,
these are the oldest generators in the test set, suggesting that
training on more recent generators may have led to a slight
degradation in generalization to older DMs. Despite this, both
UV textures and SF perform better that the RGB modality on
average. These findings indicate that UV textures and SF may
capture more discriminative information.

2) Modality fusion: Examining the fourth to sixth columns
of Table I, we observe that modality fusion does not always
lead to improved performance compared to single modalities.
Notably, the FF pipeline exhibits a significant drop in BA when
analyzing samples generated by SD-1.5, SD-2.1, and SD-XL-
Turbo. However, this decline is not reflected in the AUC
metric. This discrepancy suggests that the score distributions
in the FF pipeline may have shifted into a range where the
0 threshold is no longer effective in distinguishing real from
deepfake images. In such cases, a dedicated score calibration
process may be necessary to ensure reliable detection, partic-
ularly when encountering previously unseen generators in an
in-the-wild setting. In contrast, the FS pipeline appears more
robust. Across all datasets, both FS-1 and FS-2 consistently
achieve BA and AUC values that are comparable to or better
than those of single modalities. These results indicate that, in
this case, a calibration procedure may not be required. From
this perspective, the perceptron-based strategy emerges as the
most effective, achieving the highest average BA.

3) State of the art comparisons: The CLIP-based meth-
ods proposed in [4], [S] perform worse than our proposed
approaches in both the single modalities and fusion strategies.
Moreover, both methods exhibit a drop in accuracy while
maintaining comparable AUC, suggesting that a calibration
step may be necessary to enhance their generalization.
Robustness to post-processing. To evaluate the robustness of

our proposed methods, we apply to each image of the test
set various post-processing operations. We consider editing
usually applied to images in in-the-wild scenarios, e.g., social
media, websites, etc. These operations include:

« Color correction: adjustments to brightness, contrast, hue,
and saturation;

o Downscaling: we resize images by factors x0.1, x0.25
and x0.5; we also downscale images by x0.25 and then
upscale back to their original resolution. We refer to this
operation as DownUpscaling;

e JPEG compression: we compress images with quality
factors of 50, 60, 70, 80;

o Print&Scan (P&S): we simulate the printing and scanning
process as done in [21].

We report the average results across all generators in Table II.
We also average JPEG quality factors and downscaling levels,
reporting more details on these two transforms in Fig. 3.
Color correction does not significantly impact most of the
proposed methods, as the drop in BA compared to unprocessed
images generally remains below 2%. The only method that
falls below a BA of 70% is the approach introduced in [4].
JPEG compression also does not pose a significant challenge
for the evaluated detectors. As shown in Fig. 3, all methods
perform consistently across different quality factors. This
stability may be attributed to all the investigated detectors
(i.e., our proposed and state of the art) always process images
resized to 224 x 224, potentially reducing the impact of
JPEG artifacts. The method proposed in [4] exhibits peak
performance at a quality factor of 60, followed by a gradual
decline for other factors. This behavior suggests the model
may have been trained on similar compressed images.
Downscaling presents a greater challenge as a post-
processing operation. Among the single modalities, SF is
the most affected. However, our proposed fusion strategies
improve robustness. A closer analysis of individual down-
scaling factors (see Fig.3) shows a clear trend: detection
accuracy improves as the scale factor increases. Once again,
the method proposed in [4] delivers the weakest performance.
DownUpscaling proves even more challenging for the detec-
tors. However, UV textures and the proposed fusion techniques
remain robust, particularly FF and FS-2.
Notably, the P&S operation does not pose a significant chal-
lenge for our proposed detectors, while CLIP-based methods
struggle with it. In general, CLIP-based approaches (e.g., [4],
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TABLE II: BA@O (%) and AUC for the Various Methods under Post-Processing Operations. In bold, the best results per column.

Method ‘ No Processing ‘ Brightness Contrast Saturation Hue Downscaling ~ DownUpscaling JPEG Print&Scan
RGB ‘ 87.99/0.95 ‘ 87.73/0.95 88.09/0.94 86.88/0.95 86.68/0.95 81.89/0.93 71.83/0.90 87.83/0.95 87.09/0.95
UV texture 90.41/0.97 88.89/0.97 89.38/0.96 90.19/0.97 88.72/0.96 89.22/0.96 85.56/0.94 89.83/0.97 86.65/0.97
Surface frame 90.13/0.96 85.95/0.95 87.18/0.95 89.07/0.96 89.56,/0.96 76.83/0.93 75.23/0.91 89.95/0.96 90.01/0.96
FF 84.68/0.97 83.84/0.95 84.47/0.94 85.20/0.96 84.06/0.97 87.61/0.95 84.11/0.92 82.88/0.97 80.63/0.96
FS-1 93.36/0.93 | 92.34/0.92 91.18/0.91 93.19/0.93 93.05/0.93  85.47/0.85 79.37/0.79  93.09/0.93 92.03/0.92
FS-2 92.88/0.98 92.10/0.98 91.92/0.98 92.57/0.98 92.54/0.98 89.44/0.97 85.44/0.95 92.00/0.98  90.05/0.98
[4] 82.26/0.94 76.97/0.91 76.37/0.90 81.26/0.93 68.27/0.90 63.23/0.90 55.69/0.86 80.52/0.91 60.43/0.85
[5] 87.54/0.95 84.53/0.93 85.31/0.93 86.97/0.95 81.64/0.92 83.85/0.91 77.48/0.86 82.47/0.92 73.39/0.88
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