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Abstract—Generalizing deepfake detection remains a challenge
as generative models evolve. Existing methods struggle to gen-
eralize to unseen deepfake generation schemes, limiting their
real-world applicability. This work proposes a novel anomaly
detection-based approach that uses reconstruction loss from
low-rank Singular Value Decomposition (SVD) representations
of images. The low-rank representation of the images sup-
presses manipulations, which are manifested in the high-rank
components. Hence, our proposed approach trains a model
to reconstruct the real images from those images’ low-rank
representation while minimizing the reconstruction loss. Since
the model is trained to minimize the reconstruction loss for
real images, they exhibit significantly higher reconstruction
loss for deepfakes. By thresholding the reconstruction loss, we
effectively detect deepfake images. Our method demonstrates
high generalization compared to existing approaches in different
unseen data sets, achieving an average ROC-AUC improvement
of 6% to 29% compared to SOTA approaches. Further, we
show that our approach is robust against perturbations (e.g.,
blur, compression) without performance degradation in cross-
manipulation scenarios. In addition, we use heatmaps to explain
the difference in reconstruction loss between real and deepfake
images. Our code and additional results are made available at
GitHub Link.

Index Terms—Deepfake Detection, Low-Rank Representation,
Singular Value Decomposition, Reconstruction-Based Approach.

I. INTRODUCTION

Deepfake technology enables the creation of highly realistic
synthetic images, raising concerns about the spread of misin-
formation, identity theft, and privacy violations [19]. Despite
various deepfake detection methods based on Convolutional
Neural Networks (CNNs) and transformers, generalization
across datasets and manipulation with different manipulation
techniques remain unsolved [3], [11]. Although artifact local-
ization, detection-based approaches, and frequency-based tech-
niques offer improvements, these approaches remain sensitive
to compression and novel forgeries, which limits real-world
effectiveness [17], [28]. These challenges highlight the need
for a more generalizable deepfake detection approaches.

In addition to many supervised approaches that train CNNs
or transformers [3] on labeled datasets, techniques based on
anomaly detection and forensic analysis-driven solutions are
proposed to detect deepfakes. Anomaly detection methods
identify inconsistencies such as unnatural facial movements
or physiological signals [26], but rely on handcrafted features
that may not generalize well. Forensic analysis detects image
artifacts such as compression inconsistencies [13] or frequency

anomalies [26], improving robustness against known attacks,
but does not address generalization across unseen attacks.
perform

Fig. 1: Plot showing the mean SVD values and percentage
change in SVD values (i.e., |SVDdeepfake − SVDreal| ) for each
index across 100 images from the FF++ dataset. The plot
shows that SVD values of deepfake images exhibit signifi-
cantly, particularly in the higher indices.

We focus on a generalizable solution for detecting deepfake
images in unseen data by learning to reconstruct real/pristine
images from the low-rank SVD [18] approximation images.
The singular values in lower indices, i.e., low-rank compo-
nents, retain the image structures while the higher indices
retain subtle information about the images [6]. In Figure 1,
we show the mean and percentage differences in the SVD
values between real and deepfake images (100 images from
FF++ [16]). The SVD values are normalized between [0,1] and
then log transformed for plotting. The percentage differences
of the SVD values are higher for the high-rank components,
indicating that the deepfake manipulations mostly affect the
high-rank SVD components.

Therefore, we utilize the low-rank approximation of an
image1, approximated from its lower SVD indices, as input
to our approach. A model is trained to reconstruct real images
from the low-rank representations, thereby learning the dis-
tribution of real images. Since the training explicitly focuses
on real images, the model struggles to accurately reconstruct
deepfake images from their low-rank images, resulting in a
higher reconstruction error. This disparity in reconstruction
errors allows us to effectively distinguish between real and
deepfake images. Recently, some works have used SVDs for

1From hereon we will use the term low-rank image to denote low-rank
approximation of an image
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Fig. 2: Overview of the proposed deepfake detection approach. In the training phase (indicated using dotted lines), the U-Net
VAE model is trained only using real images. The trained model is used during inference (denoted using solid lines) to compute
Lrecon. The optimal threshold τ∗, calculated on the validation set (consisting of real and deepfake images), is then applied on
Lrecon to classify an image as real vs. deepfake.

analyzing deepfakes. Abdali et al. [1] used SVDs for deepfake
detection by extracting eigenfaces, performing tensor decom-
position, and leveraging multilinear projections to distinguish
real and deepfake images. Further, Yan et al. [25] used SVD to
decompose pre-trained weights, preserving knowledge of the
real image while learning deepfake-specific features through
a residual component. However, none of these approaches
reconstruct low-rank images to the original image for detecting
deepfakes.

Our contributions in this work are

• We propose a novel deepfake detection approach using
reconstruction loss from a low-rank image, making it
generalizable.

• We perform extensive experiments on six publicly avail-
able deepfake datasets consisting of different generation
schemes to show our approach’s generalization and cross-
manipulation capabilities.

• Further, we demonstrate the robustness of our approach
against the commonly seen perturbation of Gaussian blur
and different JPEG compression levels.

II. PROPOSED METHOD

For a given image I ∈ Rm×n, the singular value decompo-
sition can be provided as:

I = USVT , (1)

Where U and V are orthogonal matrices and S is a di-
agonal matrix that contains singular values. The low-rank
image (Ilow), which retains only the top-k singular values that
preserve ≈ 90% of the total energy, is given by:

Ilow =

k∑
i=1

σiuiv
T
i , s.t.

∑k
i=1 σ

2
i∑r

i=1 σ
2
i

≈ 0.90. (2)

Where, r is the full rank of the image matrix and σi denotes
the ith singular value. The vectors ui and vi represent the left
and right singular vectors corresponding to σi, respectively.

The low-rank image (Ilow from Equation (2)) is used to
reconstruct the original image I using a U-Net Variational Au-
toencoder (U-Net VAE). U-Net VAE preserves spatial details
while learning efficient latent representations [15] making it
an apt choice for the proposed approach. The U-Net VAE is
trained to minimize the reconstruction loss of real images as
shown in Figure 2 (dotted line), thus learning the distribution
of real images. The total loss (Ltotal) includes three aspects,
i.e., Mean Squared Error (MSE), Kullback Leibler (KL) di-
vergence, and L1 Loss, is given by:

Ltotal = LMSE + βLKL + λLL1. (3)

Where, LMSE is the Mean Squared Error, LKL is the Kullback-
Leibler (KL) Divergence, and LL1 is the L1 loss. The LMSE
minimizes the difference between the original image and its
reconstructed counterpart [2] while LKL and LL1 enhances the
generalization capability of the trained model [12], [22]. The
hyperparameters β and λ control the contribution of the KL
divergence and L1 loss, respectively. Higher values of β and
λ enforce stronger regularization on the latent space, reducing
overfitting. These parameters are tuned empirically to balance
reconstruction quality and generalization.

Since training is conducted exclusively on real images, the
total loss function (Ltotal) cannot distinguish between real
images and deepfakes. To determine an appropriate recon-
struction loss threshold, a separate validation set containing
both real and fake images is utilized. Specifically, the optimal
threshold (τ∗) must be identified. The trained U-Net VAE
model computes reconstruction losses for all images in the
validation set, generating two distinct distributions (one for
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real images and another for deepfakes) to determine (τ∗).

τ∗ = argmax
τ

J(τ) (4)

where J(τ), i.e., Youden’s Index [27] can be expressed as:

J(τ) =

∫ ∞

τ

pf (x) dx+

∫ τ

−∞
pr(x) dx− 1 (5)

pr(x) is the probability density function (PDF) of the real
class, pf (x) be the PDF of the deepfake class.

As illustrated in Figure 2 (solid lines), a low-rank image
Ilow is derived from the input image Iinput. This low-rank
image is then fed into the trained U-Net VAE model, which
generates a reconstructed image Î. The reconstruction loss
Lrecon is computed between Iinput and Î using the following
equation:

Lrecon =
1

mn

m∑
i=1

n∑
j=1

(
Iinput
i,j − Îi,j

)2

. (6)

Where Iinput
i,j and Îi,j are the pixel values at ith row and jth

column index for images Iinput and Î respectively. Based on
Lrecon and the optimal threshold τ∗, images are classified as
real or deepfake. Specifically, if Lrecon exceeds τ∗, the image
is classified as a deepfake; otherwise, it is considered real.

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

Datasets We evaluate our approach on multiple deepfake
datasets: FaceForensics++ (FF++) [16], DeepfakeDetection
(DFD) [4], Deepfake Detection Challenge (DFDC) [7], pre-
view version of DFDC (DFDCP) [8], and CelebDF (CDF)
[14]. FF++ consists of more than 1.8 million forged images
generated using Deepfakes (DF) [5], Face2Face (F2F) [20],
FaceSwap (FS) [9], and NeuralTexture (NT) [21]. We adopt
the c23 (lightly compressed) version for comparison. The
dataset split follows the standard protocol established by
DeepfakeBench [26]. Frame-level Area Under Curve of the
Receiver Operating Characteristic (ROC-AUC) is used as the
evaluation metric.
Training Details: We employ a 6-layer U-Net VAE trained for
15 epochs with a batch size of 128, using an Adam optimizer
(weight decay = 0.5) and a learning rate of 0.001. The hyper
parameters β and λ of the Ltotal (in Equation 3) are set to 0.6.

B. Results

Generalization Evaluation: Following a common general-
ization protocol, our model is trained using a dataset (e.g.,
FF++ (c23) [16]) and tested on other unseen datasets such
as CDF [14] and DFDC [7], etc. Unlike previous works
that vary in preprocessing and evaluation settings, we stan-
dardize our experiments using DeepfakeBench [26] to ensure
fair comparisons. Here, we group prior SOTA methods into
three categories: naive (direct classifiers without explicit inter-
pretability), spatial (methods using visual/semantic features),

2Accuracies are not compatable due to different testing protocol.

and frequency (methods leveraging spectral artifacts). As we
see from Table I, our approach consistently achieves superior
ROC-AUC scores compared to the SOTA approaches. This
indicates better generalization capabilities, with an average
increase of 6% to 29% compared to the previous methods.
Impact of Threshold on ROC-AUC: The choice of threshold
significantly affects the performance of deepfake detection.
To analyze this, we vary the threshold and compute the
corresponding ROC-AUC scores on the test set of different
datasets. The optimal threshold (τ∗) used for the evaluation is
determined from the validation set, which is held exclusively
from the training set to ensure unbiased selection.

In Figure 3 we show the performance variations of the
model trained on FF++ and tested on other datasets across
different thresholds. The optimal threshold (τ∗) was calculated
on the FF++ validation set. It can be seen that, while varying
the threshold within 5% of τ∗, the ROC-AUC on the other
datasets remains stable, demonstrating the stability of our
approach.

Fig. 3: Effect of threshold variation on ROC-AUC. The opti-
mal threshold (τ∗) is selected based on ROC analysis using a
validation set held out from FF++.

Cross-Manipulation Performance: We analyze the robust-
ness of our model by training it on one type of manipulation
(e.g., DF [5]) and testing it on other types of manipulations like
F2F [20], FS [9] and NT [21] manipulations. Table II presents
the results, showing that our method performs comparable to
previous augmentation-based approaches such as Face X-ray
+ BI [26] , PCL + I2G [26], and EFNB4 + SBI [26]. Despite
lacking explicit augmentation strategies, our model generalizes
well across different deepfake techniques, demonstrating its
effectiveness in detecting deepfakes for different datasets.
Robustness Evaluation: Figure 4 presents the performance
of our model under different image degradations, specifically
Gaussian blur and JPEG compression, evaluated at five dif-
ferent perturbation levels as defined by Jiang et al. [10]. Our
method performs better EFNB4 + SBI [26] in the case of
Gaussian blur and is comparable in the case of JPEG compres-
sion. Our method performs significantly better than Face X-ray
[26] and FWA [26] in both scenarios. This resilience demon-
strates that variations in input image quality have minimal
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Method Detector Backbone CDF-v1 [14] CDF-v2 [14] DFD [4] DFDC [7] DFDCP [8] Avg.
Naive Meso4 [26] MesoNet 0.736 0.609 0.548 0.556 0.599 0.610
Naive MesoIncep [26] MesoNet 0.737 0.697 0.623 0.576 0.684 0.663
Naive CNN-Aug [26] ResNet 0.742 0.703 0.646 0.636 0.617 0.669
Naive Xception [26] Xception 0.791 0.739 0.816 0.680 0.737 0.753
Naive EfficientB4 [26] EfficientNet 0.791 0.749 0.815 0.696 0.728 0.756
Naive Detect and Locate2

[23]
Xception 0.706 - 0.762 0.633 - 0.630

Spatial CapsuleNet [26] Capsule 0.791 0.747 0.684 0.647 0.657 0.705
Spatial FWA [26] Xception 0.719 0.710 0.667 0.638 0.690 0.685
Spatial Face X-ray [26] HRNet 0.709 0.679 0.766 0.633 0.694 0.696
Spatial FFD [26] Xception 0.780 0.748 0.780 0.734 0.753 0.759
Spatial CORE [26] Xception 0.780 0.743 0.802 0.743 0.753 0.754
Spatial Recce [26] Custom 0.768 - 0.812 0.713 0.734 0.752
Spatial UCF [26] Xception 0.779 - 0.810 0.759 0.763 0.778
Frequency F3Net [26] Xception 0.777 0.735 0.798 0.702 0.735 0.749
Frequency SPSL [26] Xception 0.815 0.726 0.804 0.741 0.761 0.769
Frequency SRM [26] Xception 0.793 0.755 0.812 0.704 0.741 0.760
Frequency EFNB4 + LSDA [24] EfficientNet 0.867 0.830 0.880 0.736 0.815 0.826
SVD (Ours) U-Net VAE U-Net VAE 0.892

(+0.025)
0.876
(+0.046)

0.890
(+0.010)

0.834
(+0.098)

0.903
(+0.088)

0.881
(+0.055)

TABLE I: Cross-dataset evaluations using the frame-level ROC-AUC metric on the deepfake benchmark [26]. All detectors
are trained on FF++-c23 [16] and evaluated on other datasets. The best results are highlighted in bold and the second best are
underlined. The increment of ROC-AUC value is given in blue.

Method DF [5] F2F [20] FS [9] NT [21]
Face X-ray + BI [26] 0.9917 0.9857 0.9821 0.9813
PCL + I2G [26] 1.0 0.9897 0.9986 0.9765
EFNB4 + SBIs [26] 0.9999 0.9988 0.9991 0.9879
Ours 0.9975 0.9798 0.9934 0.9852

TABLE II: Cross-Manipulation Evaluation on FF++. This
table presents the cross-manipulation performance of various
methods when trained on DF and tested on F2F, FS, and NT
manipulations.

Fig. 4: Robustness to unseen Perturbations—Frame-level
ROC-AUC (%) across different degradation levels. The left
plot represents Gaussian Blur, while the right plot corresponds
to JPEG compression. Our method (blue) outperforms other
approaches (red, yellow, green).

impact on the effectiveness of our model, further strengthening
its robustness against real-world distortions. Here, the images
are taken from the FF++ [16] dataset.
Separability of Real vs Deepfake using τ∗: As illustrated in
Figure 5, the reconstruction loss Lrecon for real and deepfake
images is plotted across different test datasets. The threshold
(τ∗) is determined from the FF++ [16] validation dataset and is

Fig. 5: Visualization of Reconstruction Loss (Lrecon) of real
and deepfake images for different test datasets like FF++,
CelebDF, DFD, DFDC. The model is trained on FF++ data
and optimal threshold (τ∗) is calculated on FF++ validation
dataset. The clear separation of real vs deepfake samples using
τ∗ demonstrates the model’s generalization capability.

consistently applied to other test datasets, including CelebDF
[14], DFDC [7], and DFD [4]. The loss values form distinct
clusters for real and deepfake images across all datasets,
with minimal misclassification. This demonstrates the strong
generalizability of our approach across different datasets.
Visual Explanation of Reconstruction Loss: Figure 6
provides a visual comparison of Reconstruction Loss (Lrecon)
for real and deepfake images. The upper row presents the
input images, while the second row displays the corresponding
normalized Lrecon in the form of a heatmap. This heatmap

1231



Fig. 6: Comparison of Lrecon between real and deepfake
images. The top row presents the input images, while the
second row illustrates the Reconstruction MSE heatmap. The
corresponding heatmap scale is provided alongside the dia-
gram for reference.

illustrates the pixel-wise MSE between the generated and
original images. In particular, for deepfake images, the model
struggles to reconstruct critical facial features such as the
eyes and lips, as evidenced by the high MSE in these areas.
In contrast, real images exhibit minimal reconstruction loss.
The key observation is that Lrecon for deepfake images is
substantially higher than that for real images supporting our
idea of using it for detecting deepfakes.

IV. CONCLUSION

The proposed approach demonstrates robust deepfake de-
tection performance, generalization across multiple datasets
and manipulation techniques. Extensive experiments on Face-
Forensics++ [16], CelebDF [14], DFDC [7], and other bench-
mark datasets has shown consistent and superior detection
performance, outperforming SOTA models in cross-dataset
evaluations. Additionally, cross-manipulation analysis con-
firms the adaptability of our approach across different deepfake
techniques without requiring explicit augmentation strategies.
Further, our robustness evaluation highlights the stability of
our approach against real-world distortions such as Gaus-
sian blur and JPEG compression. These results reinforce
the reliability and effectiveness of our approach in detecting
deepfakes under diverse conditions. Future works can extend
our approach to detect deepfakes in video data considering
temporal information.
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