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Abstract—The rapid advancement of Al-generated images
poses a growing challenge to image authenticity in critical
domains such as journalism and law enforcement. Current detec-
tion methods struggle with unseen generative models and post-
processing manipulations, making robust detection increasingly
important. In this work, we investigate the robustness properties
of the feature space of Contrastive Language-Image Pretraining
(CLIP) for synthetic image detection. To this end, we analyze the
topological structure of synthetic and real images within CLIP’s
latent space and study how post-processing attacks influence their
geometry. Our findings reveal that the positioning of training
datasets might give clues to their suitability for generalization
and that synthetic and real images react differently to specific
manipulations, creating distinguishable features. Further, certain
transformations shift samples toward a fixed point in feature
space, creating a certain level of predictability of post-processing
shift. By investigating these effects, we provide new insights
into the CLIP feature space and its role in improving the
generalizability and robustness of Al-generated image detection.

Index Terms—synthetic images, detection, deepfake, CLIP,
robustness

I. INTRODUCTION

Al-generated images have become a part in digital culture,
influencing entertainment, marketing, and political messaging.
As tools have become more advanced and accessible, even
non-experts can create flawless synthetic images. With the
vanishing of visual flaws and the rapid progress of Al image
generation, image authenticity is threatened in fields where it is
crucial: journalism, law enforcement, insurance fraud or fake
news detection. Research on synthetic image detection has
intensified, with many methods targeting sources like GANS,
autoencoders, and diffusion models. However, most detectors
struggle with unseen sources and post-processing. In real-
world settings, where images are often compressed or altered,
robust detection remains critical. A promising direction is
classifying synthetic images using the feature space from
Contrastive Language-Image Pretraining (CLIP) [1], which
has shown strong performance and robustness to low-level
perturbations, while generalizing better to unseen images than
traditional methods [1]-[5]. However, to the best of our
knowledge, a thorough analysis of the latent properties of
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synthetic and real images in regard to robustness properties
remains missing.

In this work, we explore the topological properties of synthetic
and real images within CLIP’s feature space and analyze how
post-processing attacks influence latent geometry, mapping out
factors that may influence classification performance: Certain
operations, such as blurring or noise, shift features toward a
fixed point, while others move samples closer to the decision
boundary, increasing the likelihood of misclassification. We
also observe that synthetic and real images respond differently
to certain manipulations. Building on this insight, we design
a compact set of features based on post-processing behavior
to improve generalization performance. From our explorative
investigation, we hope to provide first steps towards under-
standing and cartographing the CLIP space more thoroughly
for the robust detection of synthetic images.

II. RELATED WORK

Research interest in the detection of synthetic images has
been rising rapidly, which lead to the discovery of many
different forensic traces. The following literature review is
necessarily limited in scope, and we refer to recent surveys
for a broader coverage of the topic [6].

Statistical methods are arguably the most popular approach
to the detection of synthetic images. These methods are based
on the fact that image generators have until now failed to
fully synthesize the statistics of natural images. Internally,
they oftentimes calculate pixel statistics to expose generated
images [7]-[14]. However, these traces are rather fragile and
can be highly individual per image source. Deep representa-
tions of images based on large pre-trained networks can be
used to extract traces that generalize well across generator
architectures. One such line of methods relies on CLIP [1].
CLIP is trained on an extensive corpus of text-image pairs,
leading to semantically meaningful embeddings of the scene.

Several works have used this representation for synthetic
image detection. Ojha et al. [2], Lin et al. [3], and Khan et
al. [5] report the advantages of CLIP representations for dis-
tuingishing real and generated images. Moskowitz et al. [15]
and Cioni et al. [16] leverage CLIP-features for source attribu-
tion of synthetic images. CLIP can also be used for inpainting
detection [17]. Furthermore, Cozzolino et al. [4] show that
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Fig. 1: Distribution of synthetic and real samples in CLIP
feature space, projected onto 2D using UMAP.

even a small sample size and lightweight classifier leveraging
CLIP can achieve strong generalization.

While these works aim at strong detection accuracies,
the CLIP latent space itself is somewhat understudied. A
better understanding of its topology may further benefit the
distinction of synthetic and real images. For example, He et
al. [18] report that DINOv2 representations of synthetic and
real images differ in their sensitivity to noise, which leads to a
simple threshold-based classifier. In this work, we investigate
the latent space topology of CLIP, and how it relates to
generalization capability.

III. METHODOLOGY

We investigate three key aspects of the latent space. First,
the spatial arrangement of samples from different image
sources and their relationship to generalization. Second, the
impact of post-processing in the feature space. Third, the
interplay between post-processing and image source affiliation.

A. Datasets and CLIP Model

In this Section, we always use 400 images from each of
the 7 diffusion-based generators DALL-E 2 [19], DALL-E
3 [20], Stable Diffusion 1.5 [21], SDXL [22], Midjourney
5 [23], Midjourney 6 [23], Adobe Firefly [24], and from
3 real datasets, namely COCO [25], RAISE-6k [26], and
LAION [27]. The DALL-E 2 images stem from Corvi et
al. [11], and we generate all other synthetic images using
COCO captions as prompts, with added tokens like “photogra-
phy” to improve realism. All experiments use representations
from the pretrained CLIP ViT-L/14 [1].

B. Spatial Arrangement of Samples in Feature Space

The 768-dimensional CLIP feature space can be qualita-
tively examined through a dimensionality reduction. Fig. 1
shows a two-dimensional projection of the CLIP spaces of
real images and synthetic images via UMAP.Here, real images
from the high-quality RAISE dataset are concentrated in a

Train / Test | COCO/SD  LAION/SD  RAISE/SD  avg

LAION/SD | 53.60 92.20 37.20 61.00
RAISE/SD 2.00 0.80 99.60 34.13
COCO/SD 90.40 53.80 15.20 53.13

TABLE I: Accuracies for detecting stable diffusion images
with different real datasets: swapping real images from
LAION, RAISE, or COCO between training and test general-
izes poorly, particularly when training on RISE.

Divergence between Image Sources
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Fig. 2: Divergences (avgerage minimum Euclidean distances
between features from one image source to another) of the
datasets (see text for details).

small area, while the lower-quality real images from the
LAION and COCO datasets are more widely distributed across
the space. The synthetic images are also widely distributed,
without distinct clusters. The big differences in the distribu-
tions of RAISE compared to LAION and COCO suggest that
a classifier trained on RAISE images might face difficulties
to generalize to LAION and COCO images. This qualitative
impression can be empirically confirmed. We train non-linear
SVMs on CLIP features from different training datasets,
namely 10k samples from Stable Diffusion paired with 10k
samples from RAISE, LAION or COCO. Tab. I shows that
SVMs trained on RAISE cannot effectively detect LAION or
COCO during testing, and vice versa.

We quantitatively analyze the feature space distribution by
computing distances between dataset pairs, distinguishing a
source and a target. For each image in the source, we find its
nearest neighbor in the target using Euclidean distance in CLIP
space. The average of these minimal distances defines the
(non-symmetric) divergence between datasets. All divergences
are listed in Fig. 2. The non-symmetry shows, for example,
for the LAION dataset. LAION has a consistently larger
divergence to the other datasets than the other datasets to
LAION. This permits the conclusion that LAION is broadly
scattered throughout the space. COCO and LAION have larger
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Fig. 3: Left: angle between dataset axes ﬁ and CTYZ (C:
COCO, L: LAION). Middle: sketch of the calculated angles.
Right: mean of all angles for all axis pairs that originate from
dataset X. Low averages suggest outlier positions of X.

divergences to RAISE than to all synthetic sources, which may
also explain the weak generalization between COCO, LAION,
and RAISE reported earlier in Tab. L.

The relative location of data sources also has an impact
on the difficulty of classification, and the ability to generalize
across data sources. We hypothesize that a large angle between
the axis from one real to one synthetic image dataset to the axis
between one real to another real dataset aids generalization.
To investigate this, we computed the centroids for the CLIP
representations of each data source. With the centroids of three
data sources X, Y, Z, we measure the angle between the
vectors ﬁ and ﬁ as shown in Fig.3.

We test two properties: First, we define the axis @ between
COCO and LAION as the baseline for real images. The angle
between 67 to the axes from COCO to each of the other data
sources is reported in Fig. 3 (left). Second, we calculate the
average angle of all pairs of axes that originate from a data
source X, which is reported in Fig. 3 (right).

Fig. 3 (left) shows that the centroids of most synthetic image
sources are positioned almost orthogonally to the COCO-
LAION axis. However, also the angle between C'L and the axis
from COCO to RAISE is almost orthogonal. In combination
with the divergences in Fig. 2, this underlines the isolated
position of RAISE compared to COCO and LAION.

The right column of Tab. 3 shows substantial variation in av-
erage angles, suggesting that some sources are positioned more
centrally in CLIP space, while others lie farther away. RAISE
and SDXL/SD are notable examples: SDXL/SD’s large mean
angle of 70° suggests it lies between other sources, whereas
RAISE’s smaller angle of 36° indicates a more peripheral
position. This makes RAISE a less ideal training source, as
classifiers may struggle to generalize to other regions of the
CLIP space.

C. Impact of Post-Processing

Post-processing (e.g., recompression) oftentimes reduces
detector robustness. Hence, to better understand CLIP repre-
sentations, we also study distances and directions of shifts

Sample Shift under Post-Processing
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Fig. 4: Euclidean distance of sample shift in latent space after
processing of Stable Diffusion and COCO images.
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Fig. 5: Comparison of average sample shift measured by Eu-
clidean distance between original and post-processed sample
per image source. It can be seen that for example, resizing
with factor 0.75 causes a much larger shift for samples from
COCO and LAION.

after post-processing. We apply either resizing with factors of
r € {0.45,0.75,1.25,1.55,1.75}, Gaussian blur with o, =€
{0.5,1,2,3,5,8,15,30}, JPEG-compression with quality ¢ €
{95, 90, 85,80, 75,50,10,5,2}, or additive Gaussian noise
with with o, € {5,7,9,20,50,100,200}. Several works
locate traces of synthetic images in color properties [13], [28],
[29], which is why we also add contrast enhancement, Gamma
correction, histogram equalization and contrast stretching, and
we also add JPEG AI compression with bitrates of 0.06, 0.25,
and 0.75, since JPEG Al introduces similar artifacts as image
generators [30] and can disturb detectors [31].

We calculate the Euclidean distances between CLIP em-
beddings of original and post-processed images. Fig. 4 shows
the mean distances per post-processing for COCO and Sta-
ble Diffusion images. As expected, higher post-processing
strength shifts features by a larger distance. Fig. 5 shows
the mean Euclidean distances of 7 example post-processings
across all image sources. We observe that the distances may
notably vary across image sources. For example, histogram
equalization causes larger mean distances on real than on
synthetic images. One reason for this observation might be
that image generators create higher contrast images due to
their optimization for visual aesthetics. Also, resizing affects
real images more strongly, while noise affects synthetic images
more strongly, which is in line with observations by He et
al. on the DINOvV2 representation [18]. Another interesting
property is that the variance of samples within a dataset
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Fig. 6: Distribution of Stable Diffusion samples (blue)
originally and after processing with different blur-
factors(pink=medium, red=strong). Especially for blur
and noise, higher processing factors lead to more dense
feature representations.

decreases for high amounts of blur or additive noise, as
shown in Fig. 7. This is plausible from a signal processing
perspective, when considering that both operations cancel in
the infinite limit the distinguishing information in images. A
2-D UMAP projection visualizes this property in Fig. 6 for
images from Stable Diffusion, where the distribution contracts
for higher amounts of noise.

D. Interplay between Post-Processing and Source Attribution

An interesting question is whether post-processing directly
pushes samples across the decision boundary into another
class, or whether associated misclassifications stem from an-
other effect. Fig. 5 indicates that a shift due to post-processing
may well reach an Euclidean distances of 8. This appears fine
when noting that the divergences in Tab. 2 are in the order
of about 12 to 20. However, we also calculated the minimal
distances between two image sources (i.e., we searched for
the two closest samples). These distances range from 5.26
to 13.09 with a mean of 9.15, which indicates that there is
the possibility to directly cross a class boundary with post-
processing. To further disambiguate these findings, we study
the direction of the post-processing shift. Additive noise shifts
synthetic samples roughly into the direction of samples from
COCO. For example, Midjourney 5 and Midjourney 6 samples
with added noise o = 50 shift within a cone of approximately
a 60° angle toward the direction of COCO. JPEG-ATI shifts real
samples from LAION with a mean angle of about 70° towards
synthetic samples, where stronger compression rates narrow
that angle. Such shifts in the rough direction across the real-
synthetic boundary make it more likely that post-processing
directly crosses the class boundary.

IV. APPLICATION TO CLASSIFIER DESIGN

CLIP-based classification of synthetic images works well in
principle, but it nevertheless leaves room for improvement in
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Fig. 7: Feature variance of Stable Diffusion samples after
processing.

the generalization, as shown for example in Tab. I in Sec. III-B.
We hence loosely adapt and extend the idea by He et al. [18]
to our findings, and complement the classifier with cues from
the post-processing shift of an image.

More specifically, 13 features are calculated from an input
image and its post-processed versions. The features consists
of 8 Euclidean distances between input and post-processed
image, namely from JPEG compression with quality ¢ €
{0.85,0.95}, resizing with factors r € {0.75,1.25}, additive
noise with o € {9,20}, histogram equalization, and contrast
enhancement. The remaining 5 features are cosine similarities
between the direction of the mean post-processing shift of
the synthetic training images from Stable Diffusion and the
input sample. Here, we use noise with o € {9, 20}, histogram
equalization, gamma correction, and contrast stretching. Clas-
sification is done with a SVM with RBF kernel. Different from
the previous Section, training is done on 10k images from both
the COCO and the Stable Diffusion datasets. Testing is done
on 500 “fresh” images per image source that have never been
used anywhere else in the paper.

Results are reported in Tab. II for the standard CLIP
features as “COCOQO/SD”, only on the post-processing fea-
tures as “Postproc”, and joint training on both features as
“COCO/SD + Postproc”. The last row fuses the three outputs
via majority vote. Overall, post-processing metrics improves
the generalization across real datasets, but they perform poorly
on synthetic data like DALL-E 3 that behaves similarly to real
data. Training on both representations only slightly improves
the mean accuracy from 78.28% to 78.42%. However, not all
of these errors are correlated, and a majority vote among the
three classifiers leads to an average accuracy of 80.52%.

For contextualization we also report performances for meth-
ods by Khan et al. [5], Ojha et al. [2], and Cozzolino et al. [4].
Cozzolino et al. [4] outperforms our classifier, but we note that
the focus of this work is to better understand the CLIP space
rather than to optimize performance (and hence also did not,
e.g., conduct paired training as Cozzolino et al. [4].

V. CONCLUSION

This work explores the geometry of features in CLIP space
and how post-processing influences the distribution of real and
synthetic samples. It turns out that different datasets of real
and synthetic images occupy different locations in the space,
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COCO LAION RAISE DE2 DE3 FF MIJ5 MJ6  SD SDXL | avg
Khan et al. [5] 69.6 73.0 33.6 6.4 95.0 17.8 65.2 376 514 65.2 51.48
Cozzolino et al. [4] 100.0 95.9 97.9 84.1 1.7 984 100.0 983 100.0 100.0 87.63
Ojha et al. [2] 93.0 92.5 7.0 603 655 6.1 39.8 9.0 29.0 39.8 44.20
COCO/SD 90.4 53.8 15.2 88.6 640 998 928 81.8 98.6 97.8 78.28
Postproc 98.4 94.4 75.8 458 14 98.8 82.6 46.0 99.8 100.0 74.30
COCO/SD + Postproc 70.2 98.6 54.6 848 158 982 854 78 98.8 99.8 78.42
Fused COCO/SD + Postproc || 91.4 96.6 504 83.0 158 988 922 77.6  99.6 99.8 80.52

TABLE II: Test accuracies for the CLIP-space metrics. The features show complementary benefits (see text for details).

and we extensively study their relative positions. An improved
understanding of these relative locations can aid the construc-
tion of more robust classifiers. We demonstrate this with the
example of a compact 13-element feature vector of shifts in
distances and directions when post-processing an image, which
helps to improve the robustness towards the (in CLIP-space)
isolated RAISE dataset, while also maintaining robustness to
unseen image generators. We hope that this work inspires
follow-up works that aim at improved forensic detector design
from a characterization of trained representations.
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