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Abstract—Head-Related Transfer Functions (HRTFs) play a
key role in spatial audio, particularly for vertical sound localiza-
tion, where interaural time and level differences are negligible.
While spectral cues essential for elevation perception have been
extensively studied, their precise contributions remain elusive. In
this work, we investigate the saliency of spectral cues by leverag-
ing Explainable Artificial Intelligence (XAI) techniques applied
to a deep learning model trained for HRTF-based elevation
classification. Using saliency maps, we identify and systematically
ablate key frequency bands in perceptual experiments to assess
their role in human sound localization along the median plane.
Our preliminary results suggest that removing high-saliency
frequency bands degrades localization accuracy, supporting the
model’s predictions. However, the degree of impairment varies
across conditions, indicating a complex interplay between spectral
cues and perceptual processing. These findings highlight the
potential of XAI for interpreting spatial hearing models and
motivate further investigation into the perceptual significance of
HRTF saliency.

Index Terms—Spatial audio, Convolutional neural networks,
Explainable AI.

I. INTRODUCTION

Head-Related Impulse Responses (HRIRs) are an essen-
tial concept in spatial audio and sound localization. They
describe how sound waves are altered as they interact with
the human head, ears, and torso [1]. Head-related transfer
functions (HRTFs) encapsulate in the frequency domain the
frequency-dependent filtering effects of these anatomical struc-
tures, which vary from person to person, allowing for the
localization of sound sources around the listener [2]. HRTFs
are particularly important for determining the position of a
sound in three-dimensional space [3], enabling listeners to
perceive directionality, such as vertical (elevation) localization
[4]. Numerous studies have investigated the spectral cues criti-
cal for elevation localization, aiming to identify the frequency

bands that contribute to this perceptual task [5]–[8]. Recent
research has highlighted specific frequency ranges—400 Hz
to 1.2 kHz, 4 to 8 kHz, and 12 to 14 kHz—as particularly
relevant [9]. Despite these advancements, a complete under-
standing of elevation cues remains elusive, posing challenges
for applications such as binaural spatial audio simulation
and personalization. To tackle this issue, various modeling
and prediction techniques have been explored, with deep
learning methods emerging as a promising approach for HRTF
personalization [10]–[13].

Building on prior research [14]–[16] that leveraged Ex-
plainable AI (XAI) to analyze spectral saliency in HRTF-
based elevation classification, this study aims to validate those
theoretical findings through perceptual experiments. Previous
work applied Class Activation Mapping (CAM) techniques to
convolutional neural networks (CNNs) trained on large-scale
HRTF datasets, revealing that mid-to-high frequency bands
(notably between 4-10 kHz) played a crucial role in elevation
classification. These findings, while consistent with classical
studies on spectral cues, were derived purely from model-
driven saliency predictions, leaving open the question of their
perceptual relevance for human sound localization. To bridge
this gap, we conducted a series of user-based experiments
designed to assess the perceptual impact of ablating the
frequency bands identified as salient by the model. Objective
localization tests were performed, where participants listened
to stimuli with systematically removed spectral components
corresponding to the model’s most relevant frequency regions.
By analyzing changes in localization accuracy, we aim to
determine whether the saliency patterns observed in neural
network models align with human perceptual processes. The
results provide preliminary insights into the role of these
spectral cues in median-plane sound localization and highlight
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the potential of XAI techniques for interpreting and refining
computational models of spatial hearing.

II. BACKGROUND

The ability to localize sound sources in the vertical plane
depends on spectral filtering effects introduced by the listener’s
anatomy. Unlike horizontal localization, where interaural time
and level differences (ITD and ILD) provide robust cues,
elevation perception relies on monaural spectral cues caused
by reflections and diffractions from the pinnae, head, and
torso. Early studies identified spectral peaks and notches as
key elements in elevation perception. Hebrank and Wright, [5]
along with Shaw [6] demonstrated that a spectral notch in the
5-8 kHz range plays a crucial role in front-back and elevation
discrimination. Subsequent research highlighted additional
peaks at 7-9 kHz and high-frequency cutoffs between 10-14
kHz as relevant for vertical localization. More recent studies
[9] have identified three critical bands: 400 Hz - 1.2 kHz, 4
- 8 kHz, and 12 - 14 kHz. Despite these insights, the precise
contributions of different frequency bands remain debated.
Some studies [17]–[19], suggest that spectral gradients, rather
than absolute peaks and notches, may be key cues used by the
auditory system, while others [20] emphasize the potential role
of low frequencies (below 2 kHz), particularly for front-back
discrimination. These complexities have motivated the use of
data-driven methods, such as deep learning, to systematically
analyze spectral cues in elevation perception.

A. XAI-Based Saliencies

Deep learning models, particularly CNNs, have been em-
ployed to classify HRTFs and predict elevation sectors based
on spectral patterns. However, the black-box nature of these
models raises challenges in understanding how they make
decisions. XAI techniques, such as CAM and Grad-CAM,
provide a way to visualize the most influential spectral regions
for classification. In our previous work [14]–[16], we trained
a CNN model for HRTF-based elevation classification, lever-
aging data from 11 public HRTF datasets to analyze spectral
saliencies. These datasets varied in acquisition conditions, in-
cluding spatial resolution, subject diversity, and measurement
techniques. To improve model robustness across datasets, we
explored different preprocessing techniques, such as amplitude
normalization using Average Equator Energy (AEE) [21],
mel-frequency warping or Equidistant Rectangular Bandwidth
(ERB) filtering. The final trained CNN model used ERB filter-
ing and AEE normalization, which provided the best trade-off
between classification accuracy and interpretability. The model
classified HRTFs into seven elevation sectors ranging from
Front-Down to Back-Down, following a sector-based approach
to improve robustness.

Using CAM-based saliency analysis, we identified high-
saliency regions primarily in the 4-10 kHz range, with ad-
ditional contributions from low-frequency bands below 500
Hz in rear and lateral positions. The model consistently
highlighted spectral features that align with classical audi-
tory research, such as notches in the 5-8 kHz range and
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Fig. 1: CAM saliency example on HRTFs from Subject 003
of the CIPIC dataset. (a) HRTF magnitude map divided into
the considered elevation sectors. (b) CAM-based saliency.

peaks near 7-9 kHz. Additionally, saliencies suggested that
low-frequency components may play a greater role in rear
localization than previously assumed. To illustrate how the
model highlights critical frequency regions, Figure 1 presents
an example saliency map for a representative subject from
the CIPIC dataset, revealing which frequency bands most
influenced the model’s classification. While these findings are
insightful, they remain model-driven. It is still unclear whether
these AI-derived spectral cues correspond to perceptually
relevant localization features in human listeners. By combining
computational analysis and perceptual validation, this study
aims to determine whether XAI-derived spectral cues reflect
actual auditory perception.

III. METHODOLOGY

A. HRIR Measurement

The experiment was conducted in a controlled recording
studio environment, where participants’ pinnae were posi-
tioned at a height of 1.12 meters. The Presonus Eris E4.5
loudspeakers were used for sound presentation, arranged in
a circular configuration with a 1.75-meter radius around the
listener to ensure consistent spatial positioning of the stimuli.

For HRIR recordings, we employed Roland CS-10EM in-
ear microphones, which provided a high-fidelity capture of
individual binaural responses. The same Roland CS-10EM
microphones were later used as headphones for stimulus
reproduction during the perceptual tests, ensuring consistency
between recording and playback conditions. To achieve precise
speaker placement and minimize positioning errors, a laser-
based positioning system was utilized, allowing for accurate
alignment of the loudspeakers relative to the participant.
Additionally, all recorded HRTFs were compensated for the
frequency response of the microphones, ensuring that the ren-
dered stimuli faithfully represented the individualized acoustic
filtering effects of each listener.

A photograph of the measurement setup is shown in Fig-
ure 2. The measurement setup included seven speaker po-
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sitions along the sagittal plane, selected to assess elevation
perception (see Table I). Furthermore, four equatorial positions
were placed at 90-degree azimuth separations to provide
spatial coverage at 0º elevation that were used to apply AEE
normalization.

A total of six subjects (4 males and 2 females) without
declared hearing impairment participated in the experiment.

TABLE I: Test locations for elevation perception assessment

Angle in Sagittal Plane Elevation Class Abbreviation
-30º Front-Down FD
0º Front-Level FL
45º Front-Up FU
90º Up UP
135º Back-Up BU
180º Back-Level BL
210º Back-Down BD

Fig. 2: HRTF measurement setup.

B. HRTFs processing

Once the HRIRs of the subjects are measured, they must
be processed into a format compatible with the 1D-CNN
model used for elevation classification. This pre-processing
step ensures that the input data aligns with the model’s
expected representation, allowing for CAM analysis to extract
the specific frequency regions considered relevant for elevation
discrimination. The measured HRIRs are first transformed
from the time domain to the frequency domain using the
Fast Fourier Transform (FFT). Only the absolute magnitude
values are retained, as the model focuses on spectral magnitude
features rather than phase information. To standardize the
spectral representation and enhance the perceptual alignment
of the data, we apply two preprocessing techniques:

a) AEE Normalization [21]: : The amplitude of each
HRTF is normalized relative to the mean energy of HRTFs
measured at 0◦ elevation across all azimuths. This ensures
consistency by compensating for overall amplitude variations
while preserving elevation-dependent spectral features.

b) ERB-Based Spectral Filtering: : The frequency repre-
sentation is further refined using an ERB filter bank with 255
filters, covering the frequency range 50 Hz to 22.050 Hz [22].
This approach mimics the human cochlear frequency response,
enhancing the model’s ability to capture perceptually relevant
spectral cues.

By processing the HRIRs with AEE normalization and ERB
filtering, we generate input data that is directly compatible
with the trained 1D-CNN classifier. This enables CAM-based
saliency analysis, allowing us to identify the subject-specific
frequency regions that the model deems most relevant for
elevation classification for each specific subject.

C. Reference Stimuli

The reference stimuli consisted of two Gaussian white-noise
bursts, each lasting 1 second, separated by a 250 ms silent
interval. To prevent abrupt onset and offset artifacts that could
influence perception, each burst was shaped with 20 ms cosine-
squared ramps at both the beginning and end. This smoothing
helped maintain natural transitions, minimizing unintended
spectral or temporal cues.

D. HRTFs Ablation

The saliency values were derived from the classifier model,
which processes HRTFs as two-channel inputs, each with 255
frequency components. For each input, the model assigns an
elevation class prediction and generates a saliency score for
each frequency, indicating its relative contribution to the classi-
fication decision. To identify the most critical frequency bands,
we extracted saliency peaks for each subject that exceeded a
threshold of 0.5 (on a scale from 0 to 1). These peaks represent
the most influential frequency components in the HRTF, as
determined by the model. Given that the stimulus energy
is evenly distributed across frequencies, we implemented a
targeted ablation of 25% of the spectral content by selectively
removing frequencies around the detected saliency peaks. To
achieve this, we applied a 4th-order Butterworth bandpass
filter in the time domain, centering each filter at a detected
saliency peak. The filter bandwidths were set to evenly dis-
tribute the ablation across all identified peaks, ensuring that
exactly 25% of the spectral content was removed.

Ablation was performed using two different frequency rep-
resentations:

• Linear frequency scale: where frequency bands are
spaced evenly in Hz across the frequency range.

• ERB scale: which follows a perceptual frequency distri-
bution that approximates human auditory filtering.

E. Localization Test

Participants first completed a brief training session to famil-
iarize themselves with the spatial characteristics of the stimuli.
This consisted of a binaural listening session, where reference
stimuli, convolved with the subjects’ HRIRs, were presented
over headphones. The stimuli covered all measured angles
in a predictable sequence, including the different elevations
considered and four lateral positions. Before each playback,
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participants were explicitly informed of the intended source
position. All participants confirmed that they perceived the
sources at the expected locations, ensuring they were properly
calibrated for the localization test.

Following training, the localization test was conducted,
where participants were presented with three different versions
of the stimuli in a randomized manner: reference (non-ablated)
stimuli, ablated stimuli using a linear frequency scale, and
ablated stimuli using an ERB scale. To provide a consistent
reference point, each trial began with two bursts of unmodified
Front-Level stimuli, followed by the test stimulus, making a
total of four noise bursts per presentation. The test included
multiple repetitions of each speaker position and ablated
stimuli to ensure response reliability.

IV. RESULTS

Figure 3 presents three graphs comparing the localization
accuracy for unmodified (black) and filtered stimuli (red),
where frequency bands were ablated using either a linear
or ERB-based approach. The graphs depict the relationship
between the participants’ identified elevation sectors and the
true target elevation sectors. The size of each dot represents
the number of participants who selected a given elevation,
providing a visual indication of response concentration at each
location.

a) Accuracy with Unmodified Stimuli: Fig. 3 a) illustrates
the results for the unmodified stimuli, showing a strong
concentration of responses along the diagonal, where the user-
identified elevation sector matches the true target sector. The
presence of larger dots near the diagonal indicates that par-
ticipants were generally able to accurately identify elevation
when presented with full-spectrum stimuli, confirming that no
essential spectral cues were missing.

b) Impact of Linear Frequency Filtering: Fig. 3 b)
shows results for the linear frequency scale filtered stimuli,
where high-saliency frequency bands were removed following
a uniform spacing in Hz. The increased dispersion of dots
away from the diagonal suggests a higher rate of errors in
elevation perception. In particular, the presence of larger dots
farther from the diagonal indicates that participants struggled
to correctly match the target elevation, suggesting that the fil-
tered frequency bands played a significant role in localization
accuracy.

c) Impact of ERB-Scale Filtering: Fig. 3 c) presents the
results for the ERB-scale filtered stimuli, where high-saliency
frequency bands were removed considering perceptual fre-
quency resolution. The results are similar to those obtained
with linear filtering, with increased response variability and
more errors in elevation identification compared to the un-
modified condition.

V. DISCUSSION

The results of our preliminary listening experiments suggest
a correlation between the high-saliency regions predicted by
the model and participants’ ability to identify elevation. Selec-
tive ablation of frequency bands led to a noticeable decrease in
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(a) Sound localization results using unfiltered stimulus
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(b) Sound localization results using filtered stimulus
removing 25% of frequency bands on linear scale
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(c) Sound localization results using filtered stimulus
removing 25% of frequency bands on ERB scale

Fig. 3: Perceived location versus true location for unmodified
and filtered stimuli.

localization accuracy, reinforcing the idea that the spectral cues
identified by the model are indeed perceptually relevant for hu-
man elevation perception. However, due to the limited sample
size and participant pool, further experiments are necessary to
validate these findings and assess their generalizability.

Our results show that when high-saliency frequency
bands—those deemed most critical by the model for el-
evation classification—were removed, localization accuracy
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significantly deteriorated. This confirms that these spectral
regions play a crucial role in spatial perception. The results
were consistent across both ablation methods (linear frequency
scale and ERB-based filtering), with both causing a similar
decline in localization accuracy. This suggests that the model-
identified high-saliency spectral regions are relevant for ele-
vation perception regardless of the specific frequency scale
used for filtering. These findings align with previous research
emphasizing the role of frequency-specific information in
spatial hearing. Our controlled ablation experiments, guided by
XAI methodologies, confirm that the spectral regions identified
by our model are fundamental for accurate elevation percep-
tion. By selectively removing these bands through saliency-
driven ablation, we provide further evidence supporting the
importance of spectral cues in HRTFs.

To further investigate the relationship between model-
predicted saliencies and human perception, future work will
extend the experiments to a larger participant pool. Addition-
ally, we aim to explore different saliency detection thresholds
to refine the identification of critical frequency regions and
assess the impact of ablation across a wider range of spatial
positions and stimuli. These efforts will enhance the general-
izability of our findings and provide deeper insights into the
perceptual relevance of saliency-based spectral cues.

VI. CONCLUSIONS

This study examined the perceptual relevance of high-
saliency spectral regions identified by an explainable AI
(XAI)-driven model for HRTF-based elevation classification.
Through controlled localization experiments, we found that
removing model-identified frequency bands led to a decline
in elevation accuracy, suggesting that these spectral cues are
likely to contribute to human spatial perception.

Both linear and ERB-based ablation resulted in similar
impairments, reinforcing the idea that the frequency bands
highlighted by the model capture perceptually relevant infor-
mation. However, given the preliminary nature of this study
and the limited participant pool, further validation is necessary
to fully establish these findings.

Future work will focus on expanding the participant pool
and HRTF datasets, refining saliency detection thresholds, and
testing across a wider range of spatial positions and stimuli
to further assess the robustness and generalizability of these
results.
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