
Integrating High Order Ambisonics and Deep
Learning for Advanced Instrument Separation in

Spatial Audio Applications
Jaime Garcia-Martinez , Pablo Cabanas-Molero , Pedro Vera-Candeas ,

Julio J. Carabias-Orti , Antonio J. Munoz-Montoro
Telecommunication Engineering Department

Universidad de Jaén, Spain

Abstract—This work explores the integration of Higher-Order
Ambisonics (HOA) and deep learning for advanced sound
source separation in spatial audio applications. We present a
computationally efficient spherical harmonics (SH) beamforming
framework that extracts spatial components from raw micro-
phone array recordings. Our methodology leverages SH-based
spatial filtering combined with a deep learning de-bleeding model,
enhancing source separation in audio applications. We evaluate
the performance of the SH beamformer and neural network
model both independently and in combination, demonstrating
that the proposed pipeline achieves superior source isolation
while maintaining high signal fidelity. Unlike previous studies
that relied on synthetic data, our approach is validated with
real-world recordings captured using a third-order spherical
microphone array. Results highlight the effectiveness of inte-
grating spatial domain filtering with deep learning for reducing
interference and enhancing separation quality. Furthermore, we
provide an open-source implementation of our approach to
encourage its adoption in spatial audio processing tasks, including
music production. Our findings pave the way for a portable-
studio paradigm, relying solely on an HOA array.

Index Terms—Ambisonics, Source Separation, Spatial Audio,
Deep Learning, Music Production, Real-world Recordings.

I. INTRODUCTION

Spatial audio technologies have gained significant attention
in recent years, enabling immersive auditory experiences in
applications such as virtual reality (VR), augmented reality
(AR), music production, and teleconferencing. Among these,
Ambisonics has emerged as a widely used method for captur-
ing and reproducing three-dimensional sound fields. Ambison-
ics represents the recorded sound scenario using Spherical
Harmonics (SH) decomposition, providing a mathematically
elegant and flexible framework for spatial sound encoding [1].

Ambisonic recording setups rely on spherical microphone
arrays that capture sound from all directions, projecting record-
ings onto the SH domain. This enables spatial sound manipu-
lation through beamforming and signal processing techniques.
Regardless of the spatial audio method, the goal remains to
synthesize virtual microphones suitable for reproduction or
further processing.
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Previous works, such as [2], have explored generating vir-
tual microphones with adjustable directivity patterns through
filtering operations, rather than using the SH framework.
While effective, this approach is inherently tied to specific
microphone array configurations. In contrast, the SH domain
enables flexible beamforming techniques [3], allowing virtual
microphones to be computed independently of the microphone
array geometry.

Recent deep learning advances have significantly im-
proved sound source separation [4]. By leveraging large-scale
datasets, neural networks have surpassed traditional methods
in speech enhancement, music separation, and spatial audio
processing. Works combining deep learning with spatial fil-
tering [5] demonstrate how spatial cues can enhance source
separation based on direction of arrival (DOA) and spatial
distribution.

While prior studies such as [6]–[8] primarily used synthetic
Ambisonic signals, we focus on real-world microphone array
recordings, addressing practical challenges like signal-to-noise
ratio (SNR) degradation due to excessive amplification at low
frequencies in higher-order SH components.

The main contributions of this paper are as follows:

• An SH separation framework integrating an SH beam-
former with a neural network-based de-bleeding ap-
proach, enabling advanced instrument separation in spa-
tial audio.

• An open-source implementation1 for converting spheri-
cal microphone array recordings into SH components,
featuring an efficient axis-symmetric SH beamforming
algorithm. This release also includes the measured room
impulse responses (RIRs) used in this work, providing
a valuable resource for further research in Ambisonic
processing and source separation.

• A demonstration of the practical applicability of the
method through real-world microphone array recordings,
expanding its relevance beyond synthetic datasets and
proving its effectiveness in real acoustic environments.

1The proposed implementation is available at https://github.com/
QHPC-SP-Research-Lab/SHArrayBeamforming.
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Here, we evaluate both the SH beamformer and a neural
network model as standalone separation methods, establishing
baselines to assess the benefits of their combined use. By
integrating spatial filtering with deep learning, our approach
facilitates portable-studio music production, significantly re-
ducing the need for multiple microphones and simplifying
ensemble and band recordings with spherical microphone
arrays.

II. SPHERICAL HARMONICS DOMAIN PRESSURE FIELD
REPRESENTATION

The complex spherical harmonics [9] are mathematically
defined as follows:

Y m
n (θ, ϕ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cos(θ))eimϕ (1)

where n and m denote the order and degree of the spherical
harmonics, respectively, Pm

n (.) is the associated Legendre
function, and i =

√
−1.

The pressure field can be expanded in terms of the spherical
harmonics as:

p(κ, r, θ, ϕ) ≈
N∑

n=0

n∑
m=−n

pnm(κ, r)Y m
n (θ, ϕ) (2)

with the Spherical Fourier Transform coefficients denoted as
pnm(κ, r). Note that the maximum order N of analysis in
the Spherical Fourier Transform domain is determined by the
total number of microphones Q of the array. Specifically, the
minimum number of microphones Q required for the Spherical
Fourier analysis is (N + 1)2.

Equation (3) is known as plane-wave decomposition [10],
and expresses the sound pressure field coefficients in the
Spherical Fourier Transform domain pnm(κ, r) in terms of a
function describing the radial dependence of the field bn(κ, r)
and the plane-wave amplitude density αnm(κ):

pnm(κ, r) = bn(κr)αnm(κ) (3)

where κ = 2πf
c is the wavenumber, c is the speed of sound

in air and f denotes frequency. By computing the coefficients
αnm(κ), a spherical harmonic representation for the pressure
field that is independent of the array geometry is obtained [11].

When the microphones of the array are mounted on a
spherical rigid surface, the function bn(κr) is expressed as:

bn(κr) = 4πin

[
jn(κr)−

j
′

n(κra)

h
(2)′
n (κra)

h(2)
n (κr)

]
(4)

where jn(·) is the spherical Bessel function of the first kind
and order n, h(2)

n (·) is the spherical Hankel function of the
second kind and order n, ra is the radius of array sphere and
the ′ operator denotes the first derivative of the corresponding
function. The magnitude of bn(κr) is represented in Figure 1
for r = ra and up to order N = 3.

Fig. 1. Magnitude of the radial function of Equation 4 evaluated for
frequencies ranging from 20 to 24000 Hz (top) and multiplicative inverse
of the same functions (bottom). The crossover frequencies are selected to
ensure an amplification lower than 40 dB when computing pnm(κ,r)

bn(κr)
.

A. Spherical harmonics beamformer

The general expression of an axis-symmetric beamformer
in the Spherical Fourier Transform domain [10] is given by:

xv(κ) =

N∑
n=0

n∑
m=−n

pnm(κ, r)

bn(κr)
dn(κ)Y

m
n (θv, ϕv) (5)

where the pointing direction of the beamformer is expressed
in spherical coordinates (θv, ϕv) and dn(κ) are the beam-
former coefficients that define an axis-symmetric polar pattern
with desired directivity properties, which may depend on the
frequency. The dn(κ) coefficients, when applied to the SH
transform of the pressure field, shape the resulting pressure
field to include the desired filter properties. In this work, a
beamformer pointing in a specific spatial direction will be
referred to as a “virtual microphone” for the remainder of
the paper.

III. PROPOSED SH SEPARATION PIPELINE

The proposed SH separation pipeline introduces a spatial-
informed, neural network-based de-bleeding approach for
processing microphone array signals. Figure 2 shows the
schematic representation of the proposed pipeline. This
pipeline takes as input both the microphone array signals and
direction of arrival information, which defines the pointing
directions of the virtual microphones produced by the SH
beamformer implemented in this work.

Considering a spherical microphone array of Q micro-
phones, the recorded signal xq[m] by each microphone q ∈
{0, 1, ..., Q− 1} is a combination of contributions from S
distinct sound sources. Each source s ∈ {0, 1, ..., S − 1} emits
a signal ss[m] that propagates to the microphones through
a reverberant and noisy environment. Thus, the total sound
pressure field recorded at microphone q is represented as:
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Fig. 2. Schematic representation of the proposed SH separation pipeline. The process begins with Q microphone array signals in the time domain, which
are transformed into the time-frequency (TF) domain. The Spherical Harmonics transform is then applied, enabling the computation of an SH beamformer
steered towards the input V directions of arrival (one per sound source in our experimentation). This results in the TF representation of virtual microphone
signals, which are subsequently converted back to the time domain. Finally, a neural network-based bleed reduction stage refines each virtual microphone
signal independently, producing the final processed output. Notably, the dimensionality of the signals progressively decreases as they pass through the pipeline.

xq[m] =
∑
s

ss[m] ∗ hq,s[m] + nq[m] (6)

where ∗ denotes the linear convolution operator, hq,s[m] is the
room impulse response between source s and microphone q,
capturing the effects of reverberation and sound propagation
delay and nq[n] is the noise captured by microphone q, which
includes background noise and sensor noise.

Given that the microphone array samples the sound pressure
field on the surface of a sphere, the recorded signals corre-
spond to a discrete spatial and temporal sampling of this field
over the microphone array’s surface. Moreover, the spherical
array considered in this work consists of a single rigid sphere
with all microphones mounted on its surface, which implies
that rq = ra∀q, with ra denoting the radius of the array sphere.

A. SH beamformer implementation

As depicted in Figure 2, the SH beamformer used in this
work operates in the time-frequency domain, processing the
Short-Time Fourier Transform (STFT) [12] representations
Xq[nf , k] of the recorded microphone signals xq[m] for mi-
crophone q, with nf and k indexing time frames and frequency
bins, respectively.

At each STFT time frame nf , the beamforming operation in
(5) can be formulated in matrix form as presented in (7). Note
that, instead of directly working with κ, we use the discrete
frequency index k, which corresponds to a linear frequency
f = fs

K k, where fs is the sampling frequency and K is the
total number of frequency bins for each time frame.

Xv,k = Yv · (Pnm,k ◦ (W ·D)) (7)

where · denotes the matrix product operator and ◦ denotes
the Hadamard (element-wise) matrix product, Xv,k ∈ CV×K

contains all frequency STFT coefficients K of the signal for
each virtual microphone v at the current time frame.

In (7), Pnm,k ∈ C(N+1)2×K contains the SH transform
coefficients up to order N of the recorded pressure field.
Following a general spatial sampling scheme [10], Pnm,k can

be discretely obtained at the current time frame from Xq[nf , k]
as follows:

Pnm,k = Y †Xq,k (8)

where the † operator denotes the pseudoinverse matrix, Xq,k ∈
CQ×K contains the the STFT coefficients for each microphone
q and each frequency bin k of the current time frame. Specifi-
cally, let the row vector xq[k] = [Xq[nf , 0] · · ·Xq[nf ,K − 1]]
represent the K STFT coefficients of microphone q at time
frame nf , the matrix Xq,k = [x0[k] · · ·xQ−1[k]]

T is obtained
by vertically stacking the row vectors xq[k] for each micro-
phone q.

In a similar fashion, the matrix Y ∈ CQ×(N+1)2 pre-
sented in (8) contains the values of the spherical harmon-
ics evaluated at each microphone location (θq, ϕq) up to
the maximum order N . Specifically, let the row vector
Yq =

[
Y 0
0 (θq, ϕq), Y

−1
1 (θq, ϕq) · · ·Y N

N (θq, ϕq)
]

represent the
(N + 1)2 spherical harmonics evaluated at the coordinates
of microphone q. Then, the matrix Y = [Y0 · · ·YQ−1]

T is
obtained by vertically stacking the row vectors Yq for each
microphone q.

The matrix Yv ∈ CV×(N+1)2 presented in (7) is defined
analogously to the matrix Y , containing the values of the
spherical harmonics evaluated at each pointing direction v ∈
{0, 1, ..., V − 1} up to the maximum order N . This enables
the steering of the beam pattern for each virtual microphone
in the beamforming process.

At low frequencies, the function |bn(κr)| tends to have
small values for higher orders n, leading to significant am-
plification when computing the magnitude of pnm(κ,r)

bn(κr)
. As

illustrated in Figure 1, this amplification can become problem-
atic in practical implementations, where real spherical arrays
introduce noise from the microphones. Excessive amplification
in these conditions leads to a severe degradation of SNR,
making it necessary to limit the gain applied to the pressure
field coefficients.

To control this effect, the beamformer incorporates a
crossover strategy in which the order n is incremented pro-
gressively at specific crossover frequencies. This ensures that
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amplification remains within a reasonable limit while preserv-
ing directional accuracy. In this implementation, the maximum
allowed gain is empirically set to 40 dB (see Figure 1),
providing a balance between maintaining spatial resolution and
avoiding excessive noise amplification.

The matrix W ∈ C(N+1)2×K in (7) is designed to com-
pensate for the amplitude of the SH transform coefficients
of the pressure field. It consists of a vertical stack of rows,
where each row corresponds to the multiplicative inverse of
bn(κr). However, to prevent excessive amplification at low
frequencies, the corresponding entries in W for higher orders
are replaced with zeros in these regions. This effectively
enforces a crossover from lower orders to higher orders as
frequency increases, as presented in Figure 1, ensuring that
the beamformer maintains stability.

The matrix D ∈ RK×K in (7) is a diagonal matrix that
contains the beamformer coefficients dn associated with the
maximum directivity beamformer, which corresponds to the
hypercardioid polar pattern. These beamformer coefficients
depend on the maximum order of the SH transform:

dn =
4π

(N + 1)2
. (9)

Since the maximum analysis order of the SH transform
varies across frequency bins due to the crossover order scheme,
the coefficients in D are filled accordingly. Specifically, D is
a diagonal matrix where each diagonal element corresponds
to a frequency bin k and follows the maximum analysis order
at that frequency, resulting in D = diag

(
4π

(0+1)2 · · ·
4π

(N+1)2

)
.

After computing Xv,k, the next step is to reconstruct the
time-domain representation of each virtual microphone signal
v. This is achieved by applying the Inverse Short-Time Fourier
Transform (ISTFT) algorithm, which converts the frequency
domain data back into time-domain signals. Each virtual
microphone’s time-domain signal represents a spatially filtered
version of the sound field, capturing the contribution from a
specific direction or region of interest.

Since the STFT of the input signals has been modified, the
ISTFT is not guaranteed to produce a realizable signal. To
ensure proper reconstruction, the analysis and synthesis STFT
windows must satisfy the Constant-Overlap Add (COLA)
constraint, allowing the ISTFT to be computed using a least-
squares estimation algorithm [13], [14].

B. Neural network model

The SH beamformer provides an initial source separation
that contains signal bleed. To mitigate this, the proposed
system incorporates a neural network-based de-bleeding stage,
which refines the virtual microphone signals. This stage is im-
plemented using Hybrid Demucs [15], a state-of-the-art deep
learning model for source separation. Hybrid Demucs extends
the Demucs architecture by incorporating both time-domain
and time-frequency processing, leveraging the advantages of
each representation to enhance signal separation.

Hybrid Demucs employs an encoder-decoder structure in-
spired by U-Net, where convolutional layers extract features

from the input signals, and long short-term memory (LSTM)
layers capture long-range temporal dependencies. The model
operates on both raw waveforms and their spectrogram repre-
sentations, fusing these complementary views to achieve high-
fidelity separation. One of the key design choices in Hybrid
Demucs is its hybrid processing approach, which allows it to
maintain fine-grained temporal details while benefiting from
spectrogram-based frequency resolution.

Hybrid Demucs was a baseline model in the Sound Demix-
ing Challenge 2023 [4], highlighting its strong performance in
separation tasks and making it a strong choice for de-bleeding
tasks. In this work, we used the pretrained hdemucs model to
this end, which can be retrieved using the official API2.

IV. RESULTS

To assess the separation performance of the SH beamformer,
Hybrid Demucs and the combination of both, we consider
three widely used objective metrics: Signal-to-Distortion Ra-
tio (SDR), Signal-to-Interference Ratio (SIR), and Signal-
to-Artifacts Ratio (SAR) [16]. The results are presented in
Figure 3.

A. Experimental setup

To generate realistic test signals, the experiments were
conducted using a Zylia ZM-1 spherical microphone array3.
This array is capable of SH analysis up to order 3 and was
deployed in a real-world recording environment. A set of
RIRs were measured using the phase-controlled exponential
sine sweep method presented in [17]. The measurement setup
consisted of sound sources arranged in a circular configuration,
evenly spaced at a distance of 1 meter from the array, within
a room with a reverberation time (RT60) of approximately
328 ms. The obtained RIRs were then convolved with source
signals from the MUSDB18-HQ dataset [18], generating test
mixtures with 2 to 4 active sources.

As a commercial reference, we evaluated the Zylia Studio
Pro software, which performs source separation by defining
virtual microphones with adjustable directive patterns. To
achieve the best possible separation performance, we config-
ured the software to maximize directivity and to apply the
highest available separation level, suppressing sound arriving
from directions outside the defined virtual microphone beam
pattern. We focused our evaluation on the most complex
scenario, with four active sources, and did not assess mixtures
with fewer sources due to the manual processing required for
each test case.

For Hybrid Demucs, separation was performed on the signal
from a single microphone at (ra, 0, 0) in spherical coordinates,
positioned at the top of the array. This placement ensured sim-
ilar energy levels across sources while minimizing attenuation
from the rigid sphere’s shadowing effect

2The pretrained model can be accessed through the API provided in the
Demucs repository: https://github.com/facebookresearch/demucs/blob/main/
demucs/pretrained.py.

3More information on the Zylia ZM-1: https://www.zylia.co/
zylia-zm-1-microphone.html
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Fig. 3. Separation performance metrics for different numbers of active sound
sources in a circular arrangement at 1 meter from the microphone array. The
three plots show SDR, SIR, and SAR, measured in dB. Results correspond
to the mean values across all active sources and are compared across four
methods: the SH Beamformer (blue), Hybrid Demucs (orange), the Proposed
method (green) and Zylia Studio Pro (red, only for 4 active sources).

For evaluation, reference signals corresponded to the iso-
lated sources obtained after beamforming. In the case of
Hybrid Demucs, the reference signals were the isolated signals
captured by the same microphone used for separation.

B. Performance analysis

The results highlight the strengths and limitations of each
method. The SH beamformer proves to be a powerful separa-
tion tool, achieving SDR values comparable to those obtained
with the neural network model, particularly in scenarios with
fewer active sound sources.

A key advantage of the SH beamformer is its ability to
maintain higher SAR values, introducing minimal processing
artifacts. In contrast, deep learning-based separation methods,
while effective in reducing interference, often degrade SAR
due to introduced distortions. This makes the SH beamformer
a particularly suitable preprocessing stage for deep learning-
based sound separation.

The Zylia Studio Pro software, evaluated in the 4-source
scenario, exhibited slightly better SDR and SIR values com-
pared to the SH beamformer. However, its separation perfor-
mance was observed to be frequency-selective, leading to a
degradation in SAR. This suggests that while Zylia’s approach
is effective in suppressing interference, it introduces artifacts
that affect signal quality.

As depicted in Figure 3, our proposal consistently out-
performs the other approaches, particularly in SIR, while
maintaining stable SAR metrics, demonstrating its effective-
ness in reducing interference while preserving signal quality.
Although not real-time in this work, the system can be readily
extended to low-latency operation as in Zylia Studio Pro.

V. CONCLUSIONS

In this work, we presented a spatial-informed, neural
network-based de-bleeding approach that operates in the SH
domain. Unlike previous studies that rely on simulated data,
we evaluated our approach using real-world recordings cap-
tured with a spherical microphone array. The results highlight
the synergistic relationship between the SH beamformer and

deep learning-based source separation. The SH beamformer
provides spatial filtering without introducing significant ar-
tifacts. By combining the SH beamformer with a neural
network model, the resulting system enhances source sep-
aration performance while maintaining high signal quality.
Moreover, we provide an open-source implementation of the
described SH beamformer for efficient spatial filtering and
virtual microphone synthesis, aiming to encourage further
research and adoption of SH-domain processing in real-world
audio scenarios.
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