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Abstract—This paper investigates the application of sequence
matching (SM) techniques to enhance aided GNSS navigation in
lunar mission scenarios. Focusing on the challenges of aligning
GNSS-derived Position, Velocity, and Time (PVT) solutions with
pre-designed Aiding Trajectories (ATs) under varying geometric
conditions, the study identifies Dynamic Time Warping (DTW)
as the most effective SM strategy. The novelty lies in extending
nonlinear time-series warping methods towards the exploration
of the observation domain, introduced as a promising alternative
of our previous work based on a state domain approach. Merging
GNSS observations as primary data sequences avoids the burden
of GNSS-only state estimation—particularly limited in cislunar
environments—while enabling data fusion at an earlier stage
of processing. A key advantage of the observation domain is
its ability to support multidimensional sequence matching even
in low-visibility conditions typical of high-altitude navigation.
Throughout this work, our aim is to refine weighting strategies
and expand the use of observation-domain SM for deep-space
navigation and signal processing, leveraging the flexibility and
robustness it offers to address geometric challenges in lunar
GNSS applications.

Index Terms—Global Navigation Satellite System, Dynamic
Programming, Space communications, Space exploration, Lunar
Mission, Dynamic Time Warping

I. INTRODUCTION

The space sector is rapidly expanding, entering a new era
of deep-space exploration. As missions scale up, the demand
for accurate and autonomous Orbit Determination (OD) and
Position, Velocity, and Time (PVT) estimation is increasing.

Currently, spacecraft navigation, positioning and maneuver-
ing rely on ground-based assets such as National Aeronautics
and Space Administration (NASA)’s Deep Space Network
(DSN) [1], [2] and European Space Agency (ESA)’s European
Space Tracking Network (ESTRACK), which provide track-
ing and communication support. Moreover, on-board mea-
surements like Doppler measurements and two-way ranging
are used in combination with these assets. These methods,
while effective, have limitations, including high operational
costs, resource constraints, complex infrastructure, and latency
issues [3], [4]. To address these challenges, Global Navigation
Satellite System (GNSS) is being explored as a potential
alternative.

A notable example is the Lunar GNSS Receiver Experiment
(LuGRE), a joint NASA-Agenzia Spaziale Italiana (ASI) pay-
load on the Firefly Blue Ghost Mission 1 (BGM1) mission,

designed to demonstrate GNSS capabilities beyond 30 Earth
Radii (RE). In particular Position, Navigation, and Timing
(PNT) will be demonstrated at Moon surface and during the
Moon Transfer Orbit (MTO) [5]–[7].

Various methods have been proposed to improve OD using
GNSS, including the Orbital Filter (OF) in [8], which leverages
an Extended Kalman Filter (EKF) framework. However, at
higher altitudes, these approaches face accuracy issues due
to weak signals and high Geometric Dilution Of Precision
(GDOP). To address these limitations, an advanced OF was
developed in [9], while authors in [4] proposed the Trajectory-
Aware Extended Kalman Filter (TA-EKF), which optimally
fuses GNSS data with pre-mission trajectory information
(Aiding Trajectory (AT)). However, the lack of time alignment
between these data sources and the potentially different sample
rates introduce additional challenges [3], [4]. The solution
to this issue is investigated in a previous work [10], where
Sequence matching (SM) techniques are applied to align two
sequences. Specifically, SM is performed between sequences
of states, including the spacecraft positions and velocities. This
work introduces a novel post-processing application of the
same SM technique to a different type of sequence. Specifi-
cally, it applies the method to observables (i.e. pseudoranges
and pseudorange rates) instead of states. Compared to previous
approaches, this represents a tighter SM, as it operates directly
on raw measurement data. An effective SM is thus crucial to
a subsequent integration of aiding information into estimation
algorithms like the TA-EKF. This work uses preparatory data
from the LuGRE project as a case study.

II. THE SEQUENCE MATCHING PROBLEM AND ITS
SOLUTION

SM involves finding meaningful matches between elements
(also called samples) of two sequences. These sequences rep-
resent the evolution over time of a point in a multidimensional
space. In this context, they can be modeled as Variable-
Dimension Multi Dimensional Sequences (VDMDSs), con-
sisting of a time-ordered sequence of Multi-Dimensional Se-
quences (MDSs). Each MDS is a matrix which dimensions
may change from the other MDSs associated to different time
instants. In the context of this work, the two VDMDSs for
which we seek alignment are
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• a GNSS observables-based trajectory P =
{P1, . . . ,Pk, . . . ,PK}, which is a VDMDS having
Pk = [Pρ

k,P
ρ̇
k] as a entry, which is a MDS. Each Pk

is composed by Pρ
k ∈ R1,Lk and Pρ̇

k ∈ R1,Lk where
Pρ

k contains Lk pseudorange measurements and Pρ̇
k

contains Lk pseudorange rates, both measured at epoch
k. The number Lk of Satellite Vehicles (SVs) in Line
of Sight (LOS) can vary at each epoch. Each entry
Pk ∈ R1,2Lk has the following form similar to the red
equation representing P1 in Fig. 1.

• an Observables-Based Aiding Trajectory (OBAT) PAID =
{PAID,1, . . . ,PAID,k, . . . ,PAID,K} is a VDMDS con-
taining the aiding measurements, consisting in syn-
thetic pseudoranges and pseudorange rates. Each entry
PAID,k = [Pρ

AID,k,P
ρ̇
AID,k] is a MDS, where: Pρ

AID,k ∈
RN,Lk and Pρ̇

AID,k ∈ RN,Lk . Pρ
AID,k contains N synthetic

pseudorange measurements for each lk-th SV, and Pρ̇
AID,k

contains N synthetic pseudorange rate measurements
for each lk-th SV. The number of SVs in LOS can
vary over time; for this reason, a new set of N aiding
pseudoranges and pseudorange rates for each visible SV
lk is considered at each epoch k. An example of the final
aiding measurements matrix is reported in red in Fig. 1
for PAID,1.

A. Problem statement

To guarantee that a single sample of P is uniquely matched
with only one sample of PAID it is necessary to solve an op-
timization problem. The final result must be a time-consistent
match, meaning that the samples from the two VDMDS are
aligned in time. This requirement is enforced by introducing
specific constraints into the problem formulation. The problem
satisfying these conditions is formalized in [10] and is adapted
here to address the case under study:

S∗ = argmin
S

f(P,PAID,S) (1a)

s.t. sn,k + sd,k+1 − 1 ≤ 0 (1b)
d− n+ 1 ≤ 0 (1c)

ST1N×1 − 1K×1 = OK×1 (1d)

where the following quantities have been introduced:
• S ∈ {0, 1}N,K is a binary matrix recording the matches.

Each entry sn,k, when set to one, describes a pairwise
match between Pk and the n-th row of PAID,k, denoted
as P

(n)
AID,k. S∗ is the result of the optimal match.

• f(P,PAID,S) is the global cost function used for match-
ing the two VDMDSs depending on a specific S-matrix.
As a global cost function we consider the accumulated
local cost, such that

f(P,PAID,S) =

N∑
n=1

K∑
k=1

c
(
Pk,P

(n)
AID,k

)
sn,k (2)

where c is the local cost function. Indeed, to compute the
global cost, it may be effective to use a local cost and

implement it through a Distance Function (DF), which
measures the distance between two samples. Lp distances
can be adopted as DFs.

It is possible to differentiate between Lp distances when
referring to norms with p ≥ 1 and quasi-distance functions
when considering Lp quasi-norms 0 < p < 1. The Lp DF
characterized by p = 0 is associated to a pseudo-norm, but is
a legitimate DF [11]–[14].

The solution to (1) is subject to specific constraints.

• Monotonic match. Given a match of Pk with P
(n)
AID,k, then

Pk+1 can be matched to the aiding samples going from
n to N . Hence, the SM algorithm cannot go back in time
(cf. (1b) and (1c)).

• Match uniqueness. Each Pk can only have one associated
aiding sample (cf. (1d)).

B. Dynamic Time Warping

Different SM methods exist in the literature. However, in
this work, Dynamic Time Warping (DTW) [15], [16] is chosen
because of its flexibility and customizability. DTW is a clas-
sical SM technique that leverages dynamic programming [15]
to allow one-to-many matches by stretching or compressing
sequences. It solves an optimization problem similar to (1)
through the construction of three matrices:

• Cost matrix C ∈ RN,K : Stores the matching costs
between samples of the two sequences, computed using
a DF (see Section II-A).

• Accumulated cost matrix G ∈ RN,K : Built recursively
from C, it contains the cumulative cost of matching
sequence pairs up to a given index.

• Direction matrix D ∈ SN,K , with S := {1, 2, 3}: Defines
the optimal matching path and is constructed alongside
G.

The optimal matching path is retrieved via backtracking,
preventing local minima [16]. However, the standard DTW
output does not comply with (1d), as multiple samples of
P

(n)
AID,k can be assigned to a single Pk sample. To ensure that

each GNSS observable-based trajectory sample corresponds
uniquely to an OBAT sample, a pruning step is applied to the
matches obtained by DTW.

In particular, given Pk and a set of matched P
(n)
AID,k it is then

considered only the couple characterized by the lowest local
cost c(Pk,P

(n)
AID,k). The output of the algorithm is a VDMDS

P̂AID = {P̂AID,1, . . . , P̂AID,k, . . . , P̂AID,K} composed by the
samples that are exclusively matched to a specific sample of
Pk, where PAID,k ∈ R1,2Lk .

The SM problem is also solved applying a local weighting
technique on the G matrix which exploits the knowledge of the
local costs enclosed in C. This lead to a weighted accumulated
cost matrix

WG = C◦γ ⊙G . (3)

where γ ∈ R+ can be tuned to increase or decrease the
weighting. This strategy was developed in a previous research
[10] with the goal of improving the match accuracy.
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III. METHODOLOGY

The proposed DTW customization is extensively tested and
validated on realistic GNSS data from the LuGRE QN400-
Space GNSS receiver [17]. These data were collected during
the preparatory phase of the mission, in the context of scientific
analyses conducted through a Hardware In the Loop (HIL)
simulation testbed.

To extract GNSS observables (i.e., pseudorange and pseu-
dorange rates), the receiver’s front-end processed Radio Fre-
quency (RF) signals generated by the Spirent GSS9000 simu-
lator, which was controlled via the SimGEN software [18]. The
simulated signals included Global Positioning System (GPS)
(L1, L5) and Galileo (E1, E5) bands. To drive SimGEN and
generate consistent signals it is used a pre-defined spacecraft
trajectory Y, referred to as the AT. This trajectory forms the
basis of the OBAT, modified to provide the SM algorithm with
challenging aiding data. Additionally, the dataset contains the
sequence P, which consists of GNSS observables computed by
the receiver. Both trajectories are timestamped to Coordinated
Universal Time (UTC) and sampled at 1Hz.

A. OBAT synthetization

The main characteristic of this strategy is that the DTW per-
forms a tight match directly on the measurements. However,
before doing the match some pre-processing steps are needed.
In particular, the OBAT PAID it is obtained by a synthesis
process involving

• the information on the satellite position enclosed in XS =
{XS1, . . . ,XSk, . . . ,XSK}, a VDMDS whose entries
XSk ∈ RLk,6 contain the position and velocity in a three-
dimensional space of Lk SVs for which measurements
are available at epoch k.

• the AT that encapsulates a priori information on the
spacecraft state, and may refer to a pre-designed tra-
jectory that the spacecraft is intended to follow while
traveling. It is associated to Y ∈ RN,L and each sample
includes the spacecraft position and velocity states at the
n-th epoch in a three-dimensional space (i.e. L = 6).

• the clock bias and drift for each epoch k. They can
be obtained from a Precise Orbit Determination (POD)
solution or derived using a clock-physics model.

At epoch k, each entry of Pρ
AID,k is synthesized as

ρn,lk = ∥x̃lk − ỹn∥2 + but,k−1 +∆tḃut,k−1 (4)

where:
• ∥x̃lk − ỹn∥2 is obtained computing the Euclidean Dis-

tance (ED) between the lk-th satellite and the n-th aiding
sample. It is the LOS distance between the lk-th satel-
lite and the n-th aiding sample. In particular, x̃lk is a
vector extracted from XSk containing only the position
[xS,lk , yS,lk , zS,lk ] of a specific lk-th satellite at a given
epoch k. On the other hand, ỹn is a vector extracted
from Y containing only the position states of the AT
[xn, yn, zn];

• but,k−1 is the GNSS receiver clock bias at epoch k − 1;

𝐂 =
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⋮ ⋮ 					⋮ ⋮
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sequence is of the same format. To do this is necessary to estimate the states by
solving the multi-lateration problem described in section 2.2. Hence, the GNSS
sequence X is a MDS characterized by the samples xm = [xm, ym, zm, ẋm, ẏm, żm].
The advantage of this strategy is its simplicity, indeed the aiding trajectory can be
used as it is without any modification. At the end of the DTW stage (including
the post processing), Ŷ will be a multidimensional sequence of M entries having
the following form ŷm = [x̂m, ŷm, ẑm, ˙̂xm, ˙̂ym, ˙̂zm].
Despite its straightforward nature this can be seen as a loose-match that, involving
a state estimation stage may su�er of some approximation.

4.5.2.2 Observation-domain matching

The architecture of this working domain is highlighted in green in fig. 4.21. To
proceed with the analysis of this domain, it is necessary to define some of the
variables shown in fig. 4.21:

• P = (P1, . . . ,Pk, . . . ,PK)is a VDMDS, where each entry Pk = [Pfl
k,P

fl̇
k]is a

block matrix. This matrix is composed of Pfl
k œ R1,Lk and Pfl̇

k œ R1,Lk where
Pfl
k contains Lk pseudorange measurements and Pfl̇

k contains Lk pseudorange
rates, both measured at epoch k. The number Lk of SV in LOS can vary at
each epoch k. Each entry Pk œ R1,2Lkhas the following form :

Pk = [fl1, . . . , flLk , fl̇1, . . . , fl̇Lk ] (4.54)

In particular, Pk is the observation-domain counterpart of the X sequence,
which is used in the state-domain. While X consists of M samples, Pk consists
of K samples, corresponding to K epochs.

• X̄S = {X̄1, . . . , X̄k, . . . , X̄K} is a VDMDS whose entries X̄Sk œ RLk,6 contain
the position and velocity of Lk SVs for which measurements are available at
epoch k.

X̄Sk =

S
WWU

x̄S,1 ȳS,1 z̄S,1 ˙̄xS,1 ˙̄yS,1 ˙̄zS,1
... ... ... ... ... ...

x̄S,Lk ȳS,Lk z̄S,Lk ˙̄xS,Lk ˙̄yS,Lk ˙̄zS,Lk

T
XXV (4.55)

• P̂AID = (P̂AID,1, . . . , P̂AID,k, . . . , P̂AID,K) is a VDMDS containing the aiding
pseudoranges and pseudorange-rates synthesized from the aiding trajectory Y.
Each entry P̂AID,k = [P̂fl

AID,k, P̂
fl̇
AID,k] is a block matrix, where:P̂fl

AID,k œ RN,Lk

and P̂fl̇
AID,k œ RN,Lk . P̂fl

AID,k contains N synthetic pseudorange measurements,
and P̂fl̇

AID,k contains N synthetic pseudorange rates measurements for Lk SV.
The number of SVs in LOS can vary at each epoch k.
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Fig. 1: Example of how PAID and P contribute to the
construction of the cost matrix C in the measurement domain.

• ∆tḃut,k−1 is the linear propagation of the clock bias
through clock drift at epoch k − 1. In particular, ∆t is
the time interval between the two epochs.

At epoch k, each entry of Pρ̇
AID,k takes the form

ρ̇n,lk = (˜̇xlk − ˜̇yn) ·
x̃lk − ỹn

∥x̃lk − ỹn∥2
+ ḃut (5)

where:
• ˜̇xlk − ˜̇yn is the relative velocity between the lk-th

satellite and the n-th aiding sample. In particular, ˜̇xlk is a
vector extracted from XSk containing only the velocities
[ẋS,lk , ẏS,lk , żS,lk ] of a specific lk-th satellite at a given
epoch k. On the other hand, ˜̇yn is a vector extracted
from Y containing only the velocity states of the AT
[ẋn, ẏn, żn];

•
x̃lk

−ỹn

∥x̃lk
−ỹn∥

2

is the steering vector between the lk-th and

the n-th aiding;
• ḃut is the GNSS receiver clock drift, which is common

for all the epochs k;
The main complication of this strategy is the presence of the
variable dimension due to the variable number of SV in LOS.
For this reason, during the DTW implementation, it must be
considered that the distances associated with Pk are computed
assuming the aiding PAID,k associated with the same epoch.
Hence, the DTW is not based on one single aiding sequence
but on K sequences, which are PAID,k.
In particular, the critical step in the DTW implementation
resides in the cost matrix. In Fig 1 is shown how matrix C
it is built: for each column (hence for each Pk) the costs are
computed with respect to a different PAID,k.

B. Validation, Data Adjustment, and Metrics

The validation of the DTW algorithm is performed by
comparing the results with an exhaustive search applied to
solve (1). However, it is not possible to apply the exhaustive
search on the entire trajectory because it would result in
an unfeasible computational time. In particular, only in the
validation, this study applies the exhaustive search only to
K = 4 epochs and N = 30 aiding samples. This kind of
benchmarking is necessary to access the comparison between
the DTW and an optimal technique. A complete analysis is
carried out exploring different DFs. This approach made it
possible to determine which DF is most suitable for a specific
scenario.

1275



To enhance the generality of the tested scenarios and
challenge the SM algorithm, modifications were applied to
the AT:

• Resampling at fs = 2Hz to analyze algorithm perfor-
mance with different sample granularities, using Akima
interpolation to reconstruct intermediate points.

• Temporal misalignment between GNSS measurement
epochs and OBAT, simulated by adding a normally
distributed error ε ∼ N (0, σ2

time) to the resampled AT
timestamps tk.

The misalignment introduces a variable sampling rate,
with a maximum non-overlapping 4σtime determined itera-
tively using a finite search step to ensure conservativeness.
This guarantees temporal consistency, preventing violations of
tk + εk > tk+1 + εk+1 with a 99.9937% probability.

To analyze the performances of the DTW is considered a
dataset simulated at 60 RE located on the Low Lunar Orbit
(LLO). The reason of considering a LLO scenario is to test
the algorithm in a challenging RF visibility conditions.

The dataset is analyzed by examining the impact of time
misalignment on OBAT, considering both a ’noisy timestamp’
scenario (σtime = 0.06 s) and a ’noiseless timestamp’ case
(σtime = 0 s). In both cases, the DTW algorithm is evaluated
in two configurations: non-weighted DTW (NW) and locally-
weighted DTW (W) with γ = 1. All tests are performed using
the customized DTW applied to (1), assessing the performance
of different Lp DFs with p ranging from 0.01 to 30.

The study analysis is based on two metrics:
• Accumulated Time Difference (ATD): This is a pa-

rameter allowing the evaluation of the time consistency
in the alignment of the two VDMDS. The fundamental
assumption for accessing the ATD is that both sequences
are sharing the same time scale. This metric is analyzed
for different Lp DF, while varying p.

• Mismatch: It represents the number of different matches
given by the DTW and the exhaustive search depending
on the value of p.

IV. RESULTS AND DISCUSSION

Examining the ATD in the validation case, it is evident that
both strategies (Locally-weighted and non-weighted DTW)
behave similarly to the exhaustive search optimal approach.
This observation becomes even more appreciable when con-
sidering the mismatch analysis. In particular, from Fig. 2 it
can be observed that the number of mismatched samples is
zero for all the tested DFs. This indicates that, for every
Lp distance function analyzed, there is no difference in the
matched samples between the exhaustive search and the DTW
strategies. However, it is important to note that this result
holds only for the analyzed window. When the validation is
performed on a different window, the results can change.

For instance, analysis on a different window revealed that
the classical strategy does not always align with the results
of the exhaustive search, particularly for certain values of p
where mismatches were observed. In both scenarios, the non-
weighted DTW struggled to match the optimal approach for

Fig. 2: Validation: DTW sample mismatch with respect to the
exhaustive search at 60 RE.

Fig. 3: Validation: ATD behavior as a function of p at 60 RE.

these p values. However, when p ≥ 0.6, the ATD consistently
converged to lower values.

Extending the analysis to the entire window, it becomes
apparent that the locally-weighted technique performs worse
compared to the non-weighted strategy (see Fig. 4). The local
weighting appears to stabilize a suboptimal solution in terms
of ATD. The classical strategy yields better results initially
exhibiting high ATD values, followed by a drop and eventual
convergence to a steady level. The best outcome is observed
at p = 0.8, where both non-weighted DTW strategies achieve
their lowest respective values. This finding is further confirmed
by the mismatch value (see Fig. 3).

V. CONCLUSION

After extensive validation and testing, the local weighting
strategy showed no significant advantage in reducing ATD
compared to the classical strategy. The best results were
obtained with the classical approach, giving low ATD values,
particularly for p = 0.8, indicating improved time consistency
in the match. However, the chosen validation method is not
entirely satisfactory. Evaluating the exhaustive search on a
4-sample window does not yield conclusive results, as the
outcomes may not fully represent the entire trajectory. Indeed,
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Fig. 4: ATD behavior as a function of p at 60 RE.

it can produce varying results across different windows. Nev-
ertheless, the analysis still offers valuable insights into the
optimality or sub-optimality of DTW.

Note that the selected p should be validated within a state
estimation framework, as ATD is just an indicator of the
best performing method and p, whose ultimate impact on
state estimation can be assessed only through fusion filters
optimally integrating the matched sequences.

The key advantage of applying SM in the observables
domain is that it can be applied even with a single SV in
LOS. However, since the number of LOS SVs varies, a new
synthesized aiding must be generated at each epoch, increasing
computational complexity. Future steps are the integration of
these findings into an estimation framework, such as the TA-
EKF, to evaluate and quantify the actual contribution of the
SM method in a GNSS application. Moreover, extending the
analysis to a less challenging scenario, such as at 17 RE, will
provide further insights into the behavior of the algorithms.
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igazione GNSS nello Space volume Terra/Luna nell’ambito del
Lunar GNSS Receiver Experiment”. The authors would like
to thank Qascom and NASA for supplying the representative
datasets of LuGRE operations that supported this study.

REFERENCES

[1] NASA, “What is the Deep Space Network?” 2024. [Online]. Avail-
able: https://www.nasa.gov/directorates/somd/space-communications-
navigation-program/what-is-the-deep-space-network/#hds-sidebar-nav-4

[2] H. H. Means, “The Deep Space Network: Overburdened and under-
funded,” Physics Today, vol. 76, no. 12, pp. 22–23, 2023.

[3] O. Vouch, A. Nardin, A. Minetto, S. Zocca, F. Dovis, L. Konitzer,
J. Joel Parker, B. Ashman, F. Bernardi, S. Tedesco, and S. Fantinato,
“Bayesian Integration for Deep-Space Navigation with GNSS Signals,”
in 2024 27th International Conference on Information Fusion (FU-
SION), 2024, pp. 1–8.

[4] O. Vouch, A. Nardin, A. Minetto, S. Zocca, M. Valvano, and F. Dovis,
“Aided Kalman Filter Models for GNSS-Based Space Navigation,” IEEE
Journal of Radio Frequency Identification, vol. 8, pp. 535–546, 2024.

[5] J. J. K. Parker, F. Dovis, B. Anderson, L. Ansalone, B. Ashman,
F. H. Bauer, G. D’Amore, C. Facchinetti, S. Fantinato, G. Impresario,
S. A. McKim, E. Miotti, J. J. Miller, M. Musmeci, O. Pozzobon,
L. Schlenker, A. Tuozzi, and L. Valencia, “The Lunar GNSS
Receiver Experiment (LuGRE),” in Proceedings of the ION ITM
2022 Conference, NASA and Italian Space Agency (ASI). Long
Beach, California: Institute of Navigation, 2022. [Online]. Available:
https://ntrs.nasa.gov/api/citations/20220002074/downloads/LuGRE ION-
ITM 2022 Draft8 Submitted ConferenceProceedings.pdf

[6] K. Schauer. (2023, 3) NASA Delivers Hardware for
Commercial Lunar Payload Mission. NASA. Accessed: 2024-09-21.
[Online]. Available: https://www.nasa.gov/missions/artemis/clps/nasa-
delivers-hardware-for-commercial-lunar-payload-mission/

[7] L. Konitzer, J. J. Parker, B. Ashman, N. Esantsi, C. Facchinetti,
F. Dovis, A. Minetto, A. Nardin, F. Bauer, L. Ansalone, and et al.,
“Science Objectives and Investigations for the Lunar GNSS Receiver
Experiment (LuGRE),” in Proceedings of the 37th International
Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2024), Sep 2024. [Online]. Available:
https://doi.org/10.33012/2024.19711

[8] V. Capuano, F. Basile, C. Botteron, and P.-A. Farine, “GNSS-based
Orbital Filter for Earth Moon Transfer Orbits,” The Journal of
Navigation, vol. 69, no. 4, pp. 745–764, 2016. [Online]. Available:
https://doi.org/10.1017/S0373463315000843

[9] V. Capuano, E. Shehaj, C. Botteron, P. Blunt, and P.-A. Farine, “An
Adaptive GNSS-based Reduced Dynamic Approach for Real Time
Autonomous Navigation from the Earth to the Moon,” in Proceedings
of the Pacific PNT 2017 Conference. Honolulu, Hawaii: ION, 5 2017.

[10] F. Fiorina, O. Vouch, A. Nardin, F. Dovis, C. Facchinetti, and M. Mus-
meci, “A sequence matching approach for gnss-based orbit determination
using dynamic time warping,” in 2025 IEEE/ION Position, Location and
Navigation Symposium (PLANS), 2025, pp. 1055–1065.

[11] W. Rudin, Functional Analysis, 2nd ed. New York: McGraw-Hill, 1991.
[12] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the Surprising

Behavior of Distance Metrics in High Dimensional Space,” in
Proceedings of the 8th International Conference on Database Theory
(ICDT 2001), ser. Lecture Notes in Computer Science, vol. 1973.
Berlin, Heidelberg: Springer-Verlag, 2001, pp. 420–434. [Online].
Available: https://doi.org/10.1007/3-540-44503-X 27

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004, section A.1.3 - Examples of norms,
including Euclidean and Manhattan distances.

[14] A. Le Franc, J.-P. Chancelier, and M. De Lara, “The Capra-
subdifferential of the l0 pseudonorm,” 2021, preprint submitted on 30
Dec 2021 (v1), last revised 25 Jan 2023 (v3).

[15] H. Sakoe and S. Chiba, “Dynamic Programming Algorithm Optimization
for Spoken Word Recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[16] M. Müller, Information Retrieval for Music and Motion. Berlin,
Heidelberg: Springer-Verlag Berlin Heidelberg, 2007, with 136 Figures,
41 in color and 26 Tables.

[17] F. Dovis, A. Nardin, A. Minetto, C. Facchinetti, M. Musmeci, G. Vara-
calli, J. J. K. Parker, L. Konitzer, S. Sanathanamurthy, L. Valencia, J. J.
Miller, F. H. Bauer, S. Fantinato, E. Miotti, M. Boschiero, M. Pulliero,
S. Tedesco, F. Bernardi, and S. Guzzi, “Assessing the Usability of GNSS
on The Way To The Moon: Getting The LUGRE Payload Ready To
Fly,” in Proceedings of the 74th International Astronautical Congress
(IAC). Baku, Azerbaijan: International Astronautical Federation (IAF),
10 2023.

[18] Spirent, “GSS9000 GNSS Simulator,” Spirent Communications, Craw-
ley, UK, 2015.

1277


