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Abstract—This paper investigates the computation of a mod-
ified mismatched Cramér-Rao Bound (CRB) for time-of-flight
estimation in Global Navigation Satellite Systems (GNSS). The
main issue is the mismatch between the nominal ranging signal
and the actual received signal due to various systematic errors,
including distortion and multipath propagation. The traditional
CRB computed on the nominal signal is clearly inadequate under
such conditions, leading to the introduction of a Mismatched
CRB (MMCRB) that reflects the actual receiver’s operating
environment. The paper further introduces a Modified MMCRB
(M3CRB) that gets rid of the dependence of the bound on the
specific ranging code. This work ultimately aims to enhance
GNSS payload design using these new performance metrics.

Index Terms—GNSS, ranging, modified mismatched CRB,
payload design.

I. INTRODUCTION

The derivation of the user receiver position in a GNSS
system is still largely based on indirect ranging measurements.
The receiver estimates the positions of the diverse anchors
(i.e., the satellites) in the positioning problem through time-
of-flight estimation of the ranging signals transmitted by the
different satellites [1]. Amidst the many systematic error
sources that introduce an unknown error into this measurement
(ephemeris, satellite clock, ionosphere propagation, etc.), we
are interested here in the mismatch between the (nominal)
waveform expected by the receiver, according to Signal-in-
Space (SIS) specifications, and the actual received signal. The
reasons of this mismatch may be a few: linear or nonlin-
ear distortion introduced by the on-board Navigation Signals
Generation Unit (NSGU), multipath propagation, I/Q receiver
imbalance, etc. [5].

Very often, the user receiver has not the possibility to
model, estimate, and/or compensate the unknown distortion
on the received signal. In such conditions, computing the
conventional CRB [2] for time-of-flight estimation in Additive
White Gaussian Noise (AWGN) is not fair — it can never
be attained because of the difference (the mismatch) between
the nominal signal shape, and what is actually available
for measurement and estimation. Therefore, the correct Key
Performance Indicator (KPI) to assess ranging accuracy turns
out to be the Mismatched CRB (MMCRB, aka Mis-Specified
CRB) [3], that captures the impossibility of the receiver to
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attain the nominal performance, since the nominal signal is
not observable in its un-distorted form.

A further issue related to GNSS signals parameter estima-
tion, and in particular computation of the estimation CRB, is
the dependence of the estimate/bound on the specific ranging
code embedded into the signal under estimation. Within the
same system (typically GPS and GALILEO), the different pilot
signals coming from different satellites on the same frequency
share the very same signal format, apart from the specific
ranging code chip sequence [1]. In reality, all such ranging
codes are long pseudo-random binary sequences, so that the
dependence of the CRB on the code is vanishingly small, the
“common” CRB of all pilot signals in the same system and
with the same format is virtually independent of the ranging
code, and is very well approximated by the so-called Modified
CRB [4], much simpler to compute than the ranging-code-
dependent (true) CRB.

In this paper, we revise the derivation of the MMCRB for
time-of-flight (i.e., time delay) estimation of a ranging signal
and, following the approach above, we also introduce the
Modified MMCRB (M3CRB) to get rid of the dependence
of the bound on the particular ranging code. We also give
preliminary examples of the application of such new bound in
a condition of mild-to-severe signal distortion, and we finally
propose to use it as the Key Performance Indicator (KPI) in
signal and payload design for GNSS.

II. THE MMCRB FOR DELAY ESTIMATION

Assuming coherent baseband processing (a simplified as-
sumption to be released later on), the ideal received signal on
the observation window 0 <t < T, is:

rl(t):x(t—r)—i—w(t) ) OSt<Tobs (1)

where w(t) is Additive White Gaussian Noise (AWGN) with
power spectral density S, (f) = No/2, and where

Tovs
[ P at = £, @
0

is the signal energy within he observation time. What the
receiver actually gets is in general different, because of unpre-
dictable linear/nonlinear distortion introduced by the NSGU
on-board the satellite and/or by the propagation channel. The
actual received signal is

Ta(t) = y(t) + w(t) ) 0 <t< Tobs (3)
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where y(t) is a (hopefully slightly) distorted version of
2(t — 7). The distortion creates a mismatch between the ideal
(1) and the actual (3) signal models, so that (3) turns out to
be mis-specified. Parameter estimation on the received signal
obeys therefore a different bound, the so-called Mis-Matched
Cramer Rao Bound (MMCRB) [3] that represents the actual
best performance the receiver can attain in terms of estimation
Mean-Square Error.

To compute more easily the MMCRB, we start from the
time-discrete formulation of (3), obtained after sampling with
a frequency fs:

ran] =yl + 2] . n=0,1,.,N-1 @

where r,[n] = r(nTs), y[n] = y(nTs), and z[n] is zero-
mean AWGN with variance o, = O’é = Nofs/2 & o2
We can also assume that f;T,,s = N, N integer, so that
we have (exactly) N samples rq[n], n = 0,1,..,.N — 1
within our observation time. In the following, we will also
use the notation r, = [14[0,74[1], ..., 7 [N — 1]] and similarly
r;, ¥, X(7) to indicate the N-dimensional arrays collecting the
samples of the respective signals. Conditioned on the value
of the parameter under estimation 7, both the mismatched and
the actual signal models bear Gaussian statistics, the mismatch
lying in the different (conditional) expected value.

A first conceptual issue related to the computation of the
bound regards the notion of the “true” value of the parameter
under estimation. In the ideal signal model (1), the true value
is unambiguous: it is 7. When receiving the actual signal (3),
this notion is lost since the “delay” of y(¢) is not clearly
defined. As a first step, we define the pseudo-true value 7y of
the parameter under estimation 7 as that value that minimizes
the Kullback-Leibler divergence D (fy, (r)||fr,(x|7)) of the
probability density function (pdf) of the actual received signal
vector f., (r) wrt the pdf of the ideal signal vector, conditioned
on a particular trial value 7 of the delay:

7o = argmin D (fr, (r)||fr, (x|7))

_ : Jra (T)
= aurg;mn/rlog2 (frl )

This parameter has the same role in the actual received
signal r, as 7 has in the ideal signal model r;. Computation
of D (fr, (r)||fr,(x|7)) is relatively simple because the two
pdf’s are both Gaussian multivariate with the same covariance
matrix Cy, = Gy, = 021, i.e.,

) fr, (x|7) dr (5)

- Ir — x(7)1*
frq', (I'|T) = (271_0_3)]\//2 exXp { 20_2 }
! Ir -y
Jru(r) = (2mo2)N/2 P {_ 202 } ©

The result is

D (fr, (0)[ fr (x[7))

= ly — x(7)|
Z p=0 z

When the observation time is large, > |z[n;7]|> does not
depend on 7, therefore the value that minimizes D in (7) is
directly found by maximizing the cross correlation between
the received signal and the ideal signal model, just like in

Maximum-Likelihood delay estimation:
N-1
To = argmax Z ylnlz[n; 7] (8)
T n=0

Alternatively, to find the minimum, we can differentiate (7)
wrt to 7, obtaining the necessary condition for minimization
to hold:

N-1
> (yln] — aln; 7)) &n; 7) = 0 )
n=0
Once 79 is found, the MMCRB is as follows [3]:
b(7o)
2> 10
A2 i (10)

where

0 lnf”(r|%>r}| an

and where the notation E, means that the statistical expec-
tation has to be computed using the pdf of the actual received
signal r,.

It can be shown that, applying (10)-(11) to (6) and using
(9), we have

N-1

a(r0) = 75 3 [(wln] — alms o)) s 70] — [ s o] ]
Z n=0
1 N-1 )
b(mo) = o Z |[n; 70]] (12)
Z n=0

where &[n; 7o) and #[n; o] represent the samples of the first-
order and second-order time-derivative of x(t;7g), respec-
tively, so that the MMCRB reads

02 > MMCRBy(7)

N—1,. 2

(S5 [(wln) = ls o)) s o] — Ll 7o) ] )

In continuous time (letting 75 — 0) we have

MMCRB,(7) =

(No/2) [y |a(t — 70)|* dt

(2 bt = ) = [ (u(0) — e — 7o) ¢ — o) )"

(14)
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As a sanity check, in the conventional case of no mismatch,
7o = 7 and y[n] = z[n;7], so that (13) falls back to the
conventional CRB for delay estimation [2]

No/2

CrBC) = @t — o)) dt

(15)
fOTU bs

We can also re-cast (14) in terms of mismatch-induced
degradation A, wrt the conventional CRB.(7) [2]:

MMCRB,(7) = CRB.(1) - A, , A, >1
1
T, 2
(1__h°“(Mﬂ—xU—m»i@—m)ﬁ>

Tope s
Jo % l&(t—70)|? dt

A 2

(16)

Considering a very large, symmetric observation window and
using Parseval relation, we find after a few computations

2 @mf)? X df
R{S @Y (DX (Her>rs df }

A, =

B 7 la@)? di -
R {7yt — o) dt |

With no mismatch, A, = 1. In the general case, the degrada-
tion depends on the ratio between the second-order moment
of the self-spectrum of x(¢) and the second-order moment of
the cross-spectrum between y(t) and the re-time-phased signal
z(t — 79). From (15)-(16), and assuming that the energy of
the mismatched signal y(t) is equal to that of the noiminal
signal z(t), i.e., E, = E,, then A, can also be interpreted as
the degradation in terms of signal-to-noise-ratio to attain the
same estimation accuracy when observing the distorted signal
insyead of the nominal one.

Until now, we have neglected the dependence of the nominal
(as well as the mismatched) signal on the ranging code c.
Assume that we observe a generic real-valued pilot ranging
signal z(t;c) bearing no information data. Strictly speaking,
z(t — 7;¢) is a finite-power parametric random process with
time-unlimited sample functions depending on a ranging code
¢ whose chips are iid binary (¢ {£1}) random variables.
In our estimation problem, the ranging chips are nuisance
parameters we wish to get rid of. Calling Z(¢; ¢) the nominal
signal z(t;c) time-shifted by the pseudo-true delay 79, i.e.,
Z(t;c) = z(t — 10;¢), we can show that a result similar to
what described in [4] for the conventional CRB holds for the
MMCRB as well:

M3CRB(t) = MCRB(7) - A, (18)
where the degradation A, is now:
J7o@nf)?Sa(f) df
A = 3 ) 19
(f_oo@wf)?a%{sym(f)} i 1

In (19), Syz(f) is the power spectral density of Z(t; c), Syz(f)
is the cross-power spectrum between y(t; ¢) and Z(t; c), and
the MCRB(7) [4], [6] is

Ny

MCRB (1) = (20)

o0

T‘obs4’n—2 f f2Sm (f) df

We call (18)-(19) the Modified Mismatched CRB or M3CRB.

A. A simple example - nonlinear distortion

Let us make a simple example of the computation of A..
We assume that we wish to estimate the propagation delay of
the baseband bandlimited pulse x(¢) = sinc(2Bt) where B is
the signal bandwidth. Assume that for some reasons the actual
received pulse is a distorted version of the original pulse, i.e.,
y(t) = x%(t — 7). This is an instance of the simple general
case wherein y(t) = g [x(t — 7)] where g[ - | is a memoryless
function, as in the case of a distorting High-Power Amplifier
(HPA) onboard a satellite. If both z(¢) and the nonlinear
characteristics g[ - | are even-symmetric (as in this example),
then it is easily shown that 7p = 7. In our case, assuming for
simplicity 7 = 0, we get

_ 1 L] f
so that
JenPixpa =2
Jespvioxna == @
and finally
2 2
A, = (;;5@) - % — 2.56 (23)

with a sizeable degradation of the best estimation accuracy, in
spite of the relatively mild distortion of the pulse'.

B. Another simple example - multipath propagation

When a radio signal propagates in an urban environment, the
received signal is affected by multipath propagation, i.e., more
than one copy of the transmitted signal is received because of
the multiple propagation paths, each copy characterized by
a different delay and amplitude wrt the line-of-sight (LOS),
main path. Assuming for simplicity just two such paths,

y(t) =x(t) +a-x(t — At)

Y(f) = X(f) [L + ae™??"2] (24)

where a and At are the relative amplitude and delay of
the secondary path, respectively, wrt to the main, LOS path.

ITo be 100% fair, we remark that y(t), after the quadratic nonlinear
distortion, carries less energy than x(t), in particular E, = 1/(2B) while
E, = 1/(3B). If we assume the same E/Nj ratio in the two cases, the
degradation is smaller than in (23) by a factor 3/2=1.5
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Fig. 1. Derivation of 79 with multipath propagation

Assume again, x(¢) = sinc(2Bt) and, as a simple example,
a =1 and At = 1/(2B). Letting for simplicity 7 = 0, the
pseudo-true value of the delay 7 is found as

To = arg{nax/y(t)x(t —7)dt

= argmax / Y (f)X*(f) exp(s2m f7) df (25)
After a simple computation we find
[ Y (1) explazmsa) df
= sinc (2BT) + sinc | 2B | 7 ! (26)
= T Ly
and with the help of Fig. 1 we see that 79 = 1/(4B). The

numerator in the expression of A, is equal to 2B72/3 as in
the example before, whilst the denominator is now

B ot
» / (20 )Y ()X*(f)e 5 af

-B
B B nf 2 wf 84
_2/0 <B> -2005(23> df—;[w —8]B (27
so that ) )
B 272 /3 N
AT<§ [772—8}> ~1.91 (28)

III. CONCLUSIONS AND FURTHER WORK

The title of this paper contains an open question about
the applicability of the MMCRB to satellte positioning. Ad-
mittedly, the results presented until now qualify more as a
suggestion than a final answer. What we have in mind, to
be corroborated by further work, is first and foremost the
extension of the derivation of the M3CRB to the complex-
valued baseband equivalent of a modulated (Radio Frequency)
signal, including the introduction of carrier phase-shift on top
of the time delay. The reader will in fact have noticed that
up to this point all derivations have been carried out on a

real-valued signal — something not 100% realistic in GNSS.
This goal will call for the computation of joint as well as
marginal M3CRBs for carrier phase and group delay. After
this is accomplished, we can derive two fundamental KPIs
for the two main problems already tackled in the paper with
simple examples, namely:

1. Computation of the M3CRB on a complete two-ray multi-
path channel. In this case, the mismatched model will be a
complex-valued extension of (24):

y(t) = x(t) + a - z(t — At)e? (29)

where 6 is the phase shift of the secondary, reflected path with
respect to the LOS path.

2. Computation of the M3CRB when the RF signal is distorted
by an HPA, whose general description is

(1)
V/PIN,sat

z(t)
_— 30
\/PIn,sat ) G0

where Pry sat, PouT,sa: are the input/output HPA satura-
tion power, respectively, and gansan(-), ganpar() are the
normalized AM/AM and AM/PM input-output memoryless
characteristics, depending on the specific device.

Once the M3CRB on the multipath channel 1) above
is computed, the difference 3 = 79 — 7 will represent a
receiver-independent KPI having the role of the multipath
error envelope (MPE) [5] customarily considered in navigation
signal design to assess the robustness of a certain signal
in comparison with another. In fact, § represents the best
bias that any estimation algorithm can attain, independent
of the particular parameters of a tracking loop or estimation
algorithm (discriminator, correlation spacing, coherency, etc.)
— it has the same meaning as the MPE, but it is receiver-
independent: it is only determined by the intrinsic mismatch.

The same remark applies to optimization of the HPA op-
erating point that can be carried out after 2): the M?CRB on
a nonlinear channel will represent a criterion to design the
payload for the best ranging accuracy, replacing current KPIs
customarily considered in this case, such as the correlation
loss.

ly(t)] = v/ Pour,sat 9amam

Zy(t) = Lo(t) + gampm (
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