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Abstract—Predicting pet health outcomes holds significant
value for improving veterinary care. In this paper, we present
a machine learning-based approach using LightGBM (LGBM)
to predict 50 health outcomes in dogs. LGBM demonstrated
strong predictive performance with an average AUC of 80.48%
+ 0.61% while significantly reducing training time compared
to other tree-based models. The reduced training time enabled
rapid iteration and real-time adjustments with veterinary experts,
facilitating improvements in feature representation and disease
grouping. We analyze feature importance to provide insights
into disease prediction patterns, focusing on thyroid disorders,
Cushing’s syndrome, injuries, and tooth abnormalities. The
explainability of the model confirms known clinical relationships
for chronic diseases and highlights complex feature interactions
for multifactorial disease processes. These insights increase model
transparency and enhance trust among veterinary researchers
and practitioners.

Index Terms—Machine Learning, Disease Prediction, Explain-
able ML

I. INTRODUCTION

Machine learning (ML) has emerged as a powerful tool
in healthcare, with applications ranging from human disease
diagnosis to treatment optimization and risk stratification. Vet-
erinary medicine has started to benefit from similar advances
[1], particularly in the prediction and early diagnosis of health
conditions in companion animals [2]. Accurate prediction of
pet health outcomes can lead to improved clinical decision-
making, better resource allocation, and more targeted preven-
tive care.

Explainable machine learning is particularly critical in
health-related fields [3], [4]. Unlike traditional black-box
models, interpretable models provide insights into why a
certain prediction was made, allowing clinicians to evaluate
the biological plausibility and reliability of the model’s output.
In veterinary medicine, understanding the relationship between
clinical features (such as breed and age) and health outcomes
can enhance the confidence of veterinarians and pet owners,
supporting better treatment decisions. [5]
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The increasing complexity of health datasets further un-
derscores the importance of explainability. Pet health data is
inherently multi-modal, combining demographic factors (age,
breed, sex), environmental influences (climate, geographical
area, access to care), and historical health records. Machine
learning models need to account for these complex relation-
ships while maintaining interpretability. Tree-based models,
particularly gradient-boosting frameworks like LightGBM,
have shown strong potential for handling structured data with
mixed feature types [6]. LightGBM’s ability to efficiently
capture feature interactions makes it particularly well-suited
for pet health outcome prediction.

The global pet care market was valued at 179.4 billion
dollars in 2020 and is expected to grow to 241.1 billion dollars
by 2026 [7]. As more families consider pets as part of the
family unit, investment in pet healthcare is increasing. This
trend is reflected in the growing pet insurance market, which
is forecasted to expand from 4.5 billion to 16.8 billion dollars
by 2030 [8]. Understanding and predicting pet health outcomes
is therefore becoming increasingly valuable for improving
veterinary care and optimizing insurance policies.

Predicting health outcomes in pets presents specific chal-
lenges. Disease presentation varies across breeds, environmen-
tal factors influence health patterns, and veterinary records are
often incomplete or inconsistent. A robust model must account
for these variations while providing interpretable insights into
the underlying factors driving health outcomes.

To address these challenges, we explore the use of tree-
based models, specifically LightGBM. LightGBM’s leaf-wise
growth strategy and histogram-based algorithm allow for faster
training times without compromising predictive accuracy. We
focus on interpreting LGBM’s feature importance to provide
biological and medical insights, linking predictive patterns to
established veterinary knowledge — a key step in establishing
trust among veterinary researchers, practitioners, insurers, and
pet owners.

This paper is structured as follows. Section 2 describes the
available dataset as well as all necessary preprocessing and
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feature extraction steps. It also introduces the optimization
problem, the target variables and the LGBM. In Section 3
the performance evaluation - both in terms of AUC as well
as computational complexity - for LGBM in comparison with
other tree-based methods is shown. A discussion on feature
importances follows where we focus on four different disease
outcomes: Thyroid disorder, Tooth abnormalities, Injuries and
Cushing’s Syndrome. The paper finishes with a conclusion and
an outlook.

II. METHODS

A. Data and Preprocessing

This work is based on a unique real-world dataset provided
by the pet insurance company Fetch Inc. Fetch Inc. has
active policies in the US and Canada and over the course
of the past 17 years has insured 897,650 dogs with 2,693,872
annual policies and 3,251,433 claims. Fetch’s dataset provides
a unique opportunity to analyze long-term health outcomes
across a diverse dog population of dogs. It is a rich dataset
that includes information on the dog’s age, sex, neuter status,
breed, detailed disease history and - through linkage with the
postal code - information on the environment in which the
dog is living, including climate data (average temperature,
precipitation, number of very hot and very cold days per
year) as well as human census data such as population density
and median household income [9], [10]. The disease history
data was collected through insurance claims submitted by dog
owners and has been fully de-identified for privacy.

1) Initial Datasets: We combined two distinct datasets:
a policy dataset and a claims dataset. The policy dataset
contains information about pet insurance policies, including
demographic details of the insured dogs (age, sex, breed), en-
rollment date, and coverage type. The claims dataset includes
detailed medical records, such as diagnosis codes, treatment
details, and associated costs. These datasets were merged
based on a unique pet ID, allowing us to align demographic
and medical information for each individual pet.

2) Preprocessing: In order to prepare the dataset for model
training a number of preprocessing steps have been taken.
First, only dogs insured before the age of 12 months were
included to ensure a complete medical history. Second, only
dogs with an insured time of at least 12 months were taken
into consideration, the reason being that the model at its core
predicts disease probabilities for the upcoming year. To train
a model, at least one year of data thus needs to be available.
Third, for dogs who were insured for multiple years a splitting
into multiple training samples is performed to increase the
training dataset. Finally, missing data were handled using a
combination of mean and mode imputation, depending on
the data type and distribution. Records with incomplete or
contradictory information were excluded from the dataset.
After preprocessing, 543,433 dogs with 1,616,766 policies and
1,765,432 claims are used for model training.

3) Feature Engineering and Transformation: The prepro-
cessed and combined dataset was further used to generate

target variables and meaningful input features for the model
as described in the following

B. Target Variables

Our task at hand is to predict the occurrence of future
diseases. In the raw dataset, diseases are coded via condition
codes from which there are 1049, many of which are rare. In
order to construct meaningful target variables, a grouping of
condition codes into broader disease categories had to happen.
This was done based on clinical similarity. Seventy-nine
disease categories were generated. As some of these categories
still had a too low number for reliable prediction only the
50 categories with the highest sample sizes were chosen for
training. For these disease categories it is guaranteed that at
least 5000 samples end up in the training process.

Breed-related features
The raw dataset includes more than 500 breeds, many of
which are rare. Following the same methodology as in [2] we
grouped breed based on genetic similarity [11]. Three breed
groupings were performed and run in parallel. In addition to
the breed/breed group we also used so-called breed charac-
teristics which map variables such as trainability, demeanor,
size or coat length to a breed. It is known that for dogs
the actual breed and its characteristics is strongly related
to the probability of having certain diseases. For example,
degenerative joint diseases are known to be more prevalent
in German Shepherds [12] whereas Osteosarcoma is more
prevalent in some large breed dogs such as Irish Wolfhounds
and Saint Bernards [13].

Disease-related features
It is known that the previous disease history has a strong
influence on future diseases. To code the past disease history
we consider the same disease grouping described in the
target variable section above. One binary variable per disease
category is constructed with one-hot-encoding to describe the
presence or absence of that disease in the dogs history.

The feature set used for training is summarized in Table I.

C. LightGBM and Tree-Based Methods

LightGBM (LGBM) is a gradient-boosting framework based
on decision trees. It is well-suited for structured data with
mixed feature types, offering fast training and strong predictive
performance. Unlike traditional tree-based models that grow
level-wise, LGBM uses a leaf-wise growth strategy. In a level-
wise approach, all leaves at a certain depth are expanded
simultaneously, which can lead to redundancy and increased
computation time. In contrast, LGBM expands only the leaf
that reduces the loss function the most, resulting in faster
convergence and better handling of large datasets.

Since diseases are not mutually exclusive, the task is framed
as a set of 50 independent binary classification problems
rather than a multi-class problem. Each disease is predicted
independently using a separate binary classifier.

1303



TABLE I
SUMMARY OF DATASET CHARACTERISTICS.

Dataset

Policy Dataset

Claims Dataset

Final Combined Dataset

Records
1,616,766 policies
1,765,432 claims
2,894,787 rows

The objective function for predicting multiple diseases si-
multaneously is defined as:
1K M
L(0) = 22 > D lWyin: f@iw0) + Q) (D)
k=1i=1
where K is the number of diseases, N; is the number of
samples for disease k, y; j is the true label, f(z;x;6) is the
model prediction, and Q(f) is the regularization term defined
as:

Qf) = AMjw|* +~T 2)

where w represents the leaf weights, 7" is the number of leaves,
and ),y are regularization parameters.

Feature importance in LGBM is computed using the total
reduction in the loss function caused by each feature split:

=) AL 3)

teT;

where I; is the importance of feature j, T} is the set of trees
where feature j is used for splitting, and AL, is the reduction
in loss from the split.

III. RESULTS AND DISCUSSION
A. Model Performance

We evaluated the performance of LightGBM using five-
fold cross-validation. The primary metric used for evaluation
was the area under the receiver operating characteristic curve
(AUC). LightGBM achieved an average AUC of 80.48% =+
0.61% across all disease categories.

A comparison of AUC values and training times for Light-
GBM and the baseline models (XGBoost, Random Forest and
Naive Bayes) is provided in Table II. LightGBM exhibited
similar predictive performance to XGBoost and Random For-
est while significantly reducing training time.

TABLE II
COMPARISON OF MODEL PERFORMANCE.

Model Mean AUC Training Time (min)
LightGBM 80.48% = 0.61% 5.01

XGBoost 80.18% + 0.69%  68.98

Random Forest  73.76% + 0.81%  20.31

Naive Bayes 70.76% + 1.06%  2.71

The individual AUCs per disease group are shown in Table
ITII. We observe a span of AUC values, ranging from diseases
with high predictability and AUC values around 95% to dis-
eases with lower predictability, such as injuries or intoxication.

B. Example Cases

We analyzed the feature importance plots for individual
diseases to provide deeper insight into the model behavior.

Key Variables

Age, Breed Groups, Country, Environmental features Residential Features
Target variables (50 disease groups)

Combined Variables

TABLE III
SUMMARY OF TARGET VARIABLES.

Disease AUC
Adrenal insufficiency 90,12
Anal gland disorders 78,05
Anxiety or phobia 79,4

Arthritis 90,17
Behavioral disorders 82,5

Blood cancers 87,16
Cancerous tumors 88,96
Conformational disorders related to the skeleton 88,61
Cushing’s syndrome 94,69
Diabetes 94,19
Digestive disorders 76,65
Disc diseases 88,51
Ear disorders 77,99
Eye abnormalities 86,02
Eyelid abnormalities 87,48
Foreign body ingestion 75,08
Gait abnormalities 73,4

Gastrointestinal disorders 75,82
Gastrointestinal nervous system disorders 71,53
Heart disorders 85,2

Immune disorders 78,2

Infectious diseases 73,65
Inflammation 74,32
Inflammation of the eyes 79,4

Injuries 69,97
Internal parasites 81,47
Intoxication or poisoning 70,82
Itching 80,59
Kidney disorders 82,41
Knee injuries 83,83
Leg injuries 73,53
Lethargy 68,7

Liver disorders 84,65
Mass lesions 71,5

Pain disorders 77,3

Periodontal diseases 84,38
Preventive 77,48
Respiratory infections 75,47
Seizures 80,06
Skin disorders 82,77
Skin infections 77,87
Soft tissue injuries 72,96
Surgical 85,32
Thyroid disorders 89,35
Tooth abnormalities 71,22
Treatment 77,45
Unspecified allergies 85,65
Urinary incontinence 86,16
Urinary tract infections 76,97
Vomiting and diarrhea 72,87

1) Thyroid Disorders: Thyroid disorders, specifically hy-
pothyroidism is a common endocrine conditions in dogs. It
is particularly prevalent in certain breeds such as Golden
Retrievers and Doberman Pinschers [14], [15]. On this cat-
egory, LightGBM achieved an AUC of approximately 89%.
As can be seen in Figure 1 the most important features were
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age, skin disorders, unspecified allergies, gait abnormalities,
thyroid disorders and seizures. The model also identified an
influence of breed, with Doberman Pinschers and Golden
Retrievers showing higher probabilities for thyroid disorders,
consistent with existing veterinary findings.

Feature Importance: Thyroid Disorders
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Fig. 1. Feature importance plot for Thyroid Disorders.

2) Cushing’s Syndrome: Cushing’s syndrome, also known
as hyperadrenocorticism, is caused by excessive production
of cortisol. It can lead to symptoms such as increased thirst,
weight gain, and skin issues. LightGBM achieved an AUC
greater than 90% for Cushing’s syndrome. Age was the dom-
inant predictive feature, followed by pre-existing Cushing’s
syndrome, thyroid disorders and urinary tract infection. The
predictive pattern aligns with known clinical manifestations
of Cushing’s syndrome [16].

Feature Importance: Cushing's Syndrome

Age
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Fig. 2. Feature importance plot for Cushing’s Syndrome.

3) Injuries: Injury prediction proved to be more challeng-
ing, with an AUC of approximately 69%. Age was the only
significant predictor, while other demographic and medical
features showed low importance. The low predictive perfor-
mance for injuries reflects the stochastic nature of injury events
and the absence of clear clinical predictors.

4) Tooth Abnormalities: Tooth abnormalities, including
malocclusions, enamel defects, and periodontal disease, are
influenced by both genetic and environmental factors. Dental

Feature Importance: Injuries
Age |
Vomiting and Diarrhea  IEEG_—_—
Injuries G
Respiratory Infections | EEG_—_—_—

Ear Disorders

Features
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Soft Tissue Infuries
Treatment
Infectious Diseases NN

Gastrointestinal Disorders ~ IS

0 100 200 300 400 500 600 700 800 900 1000
Feature Importance

Fig. 3. Feature importance plot for Injuries.

health is often linked to the overall health of the dog, extent of
dental home care, characteristics of the diet fed and chewing
behavior [17], [18]. Tooth abnormality prediction had a low
AUC, consistent with the complexity and variability of dental
issues. The top predictors were previous tooth abnormalities,
injuries, vomiting, and diarrhea — but all had low individual
contribution.

Feature Importance: Tooth Abnormalities
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Fig. 4. Feature importance plot for Tooth Abnormalities.

C. Explainability and Communication with Veterinary Experts

The explainability of LightGBM’s predictions proved valu-
able when communicating results with veterinary researchers
and practitioners. Both the AUC and the feature importance
plots provided meaningful insights that aligned with clinical
expectations.

The AUC values helped to validate the model’s ability to
predict certain diseases. For instance, chronic diseases, such as
diabetes and arthritis, were expected to be highly predictable
once this disease is present — a pattern confirmed by the high
AUC values for these conditions. Conversely, conditions like
injuries, which are more influenced by random factors and
environmental events, showed lower AUC values, reflecting
the expected unpredictability of these outcomes.

Feature importance plots provided further clinical insight by
revealing which factors the model considered most influential.
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For chronic diseases like diabetes and arthritis, the plots
showed age and the presence of the disease itself as dominant
feature, which aligns with existing veterinary knowledge. For
more complex diseases with multifactorial causes — such
as gastrointestinal disorders or immune-related diseases —
the feature importance plots highlighted the contribution of
multiple factors, including co-morbidities and environmental
influences.

This level of explainability increased trust in the model
among veterinary professionals, as the patterns identified by
the model were consistent with clinical experience. Under-
standing why the model made certain predictions allowed
researchers and practitioners to validate its output and inte-
grate it more confidently into their clinical decision-making
processes.

IV. CONCLUSION

LGBM proved to be a powerful yet interpretable classifier
for disease prediction in this dataset. The decrease in train-
ing time by approximately 91% allows for faster retraining,
hyperparameter tuning, and real-time testing of new feature
representations. This enabled rapid iteration with veterinary
epidemiologists, allowing real-time adjustments to breed and
disease grouping and feature representation.

The use of feature importance plots provided intuitive
insights into the model’s behavior, reinforcing trust among
veterinary experts. Partial dependence plots offered additional
interpretability by showing how individual features influenced
predictions. Future work will focus on improving prediction
for complex, multifactorial diseases and expanding the dataset
to include a broader range of breeds and clinical conditions.
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