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    Abstract—In the realm of data analytics, translating 
natural language queries into executable SQL 
statements remains a complex challenge, particularly 
within domains rich in context-specific terminology and 
intricate data schemata. This paper introduces an 
agentic system designed to interpret user questions, 
extract analytical entities, generate and execute SQL 
queries to retrieve the desired data insights. Developed 
in the context of OLX, a global online classifieds 
marketplace with diverse platforms and categories, the 
system addresses ambiguities inherent in natural 
language and domain-specific jargon. By decomposing 
user queries into refined analytical entities, leveraging 
deterministic methods alongside Large Language 
Models (LLMs), and employing a modular agent-based 
architecture, the system achieves efficient and reliable 
translation of user intent into data retrieval operations. 
In testing, the system dynamically queries 20 tables to 
answer questions about 94 metrics and achieved a 94% 
satisfaction rate from users. We discuss the 
architecture, components, implementation details, and 
lessons learned offering insights for future research in 
data-driven conversational agents. 
 
    Keywords—Agentic systems, SQL generation, large 
language models, data analytics, conversational agents. 

I. INTRODUCTION 

    The surge in data-driven decision-making has 
intensified the need for tools that bridge the gap 
between natural language and data retrieval 
languages like SQL. Users often possess domain 
expertise but lack proficiency in formal query 
languages, creating a demand for systems that can 
accurately interpret and execute data queries 
expressed in everyday language. 

   OLX, a leading global online classifieds 
marketplace, operates multiple platforms across 
various countries, encompassing a multitude of 
categories such as goods, services, real estate, and 
motors. The complexity of OLX's data ecosystem, 
compounded by nuanced terminologies and 
overlapping concepts, poses significant challenges in 
automating the translation of user questions into SQL 
queries. 
    This paper presents an agentic system designed to 
address these challenges by decomposing user 
queries into analytical entities, resolving ambiguities 
through user interaction, and leveraging both 
deterministic methods and LLMs for query 
generation. Our contributions include: 

●​ A modular architecture that separates 
concerns and allows for extensibility. 

●​ Techniques for handling domain-specific 
ambiguities and terminologies. 

●​ Integration of deterministic parsing and 
LLMs to optimize performance and 
reliability. 

●​ Methods for dynamic retrieval and 
augmentation of knowledge bases within the 
query generation process. 

II. RELATED WORK 

    Translating natural language into SQL has been a 
focus of research for years [1][2], with approaches 
ranging from rule-based systems [3] to more recent 
work that leverages transformer architectures [4]. 
    Agent-based AI has gained traction, offering 
modularity and the ability to handle complex tasks 
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through the interaction of specialized agents [5][6]. 
The integration of LLM-based agents for SQL query 
generation has been explored by a variety of 
approaches [7]. 
    Our work differentiates itself by combining 
agent-based architecture with structured outputs, 
retrieval methods with LLMs, and deterministic 
methods [8], tailored for the complexities of OLX's 
data environment. 

III. SYSTEM ARCHITECTURE 

    The system is designed as a collection of 
interacting agents, each responsible for specific tasks 
in the process of translating user questions into SQL 
queries. The main components are: 

●​ User Interaction Agent: Manages the 
dialogue with the user, handles clarification, 
and orchestrates the overall process. 

●​ Analytical Entities Extraction Agent: Parses 
user queries to extract metrics, dimensions, 
filters, and other relevant entities. 
 

●​ Similar Questions Retrieval Agent: Searches 
a knowledge base of previous queries and 
SQL statements to find relevant examples. 

●​ SQL Generation Agent: Generates SQL 
queries based on refined user intent, 
examples, and documentation. 

●​ Execution and Error Handling Module: 
Executes the SQL queries and manages 
errors during execution. 

 
    These agents are interconnected through a 
workflow that relies on tool-invoking mechanisms. 
Each agent has the discretion to call the appropriate 
tools as needed, allowing for dynamic interaction 
based on the context of the task.  
    For instance, after the User Interaction Agent 
gathers initial input, it may invoke the Analytical 
Entities Extraction Agent to parse the query. 
Subsequently, the Similar Questions Retrieval Agent 
may be called to fetch relevant examples that inform 
the SQL Generation Agent when the User Interaction 
Agent decides we have enough information to 
proceed with the data analysis. SQL Generation 
Agent fixes the query by looking at the error returned 
from the database. This modular approach enables 
agents to iterate on their tasks, refining their outputs 
until the SQL query is successfully generated and 
executed. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. System Architecture 
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A. User Interaction Agent 

    The User Interaction Agent serves as the 
coordinator, guiding the user through the process: 1) 
Receives the user's natural language query. 2) Calls 
the Analytical Entities Extraction Agent to parse the 
query. 3) Presents the extracted entities to the user for 
confirmation. 4) Handles user feedback, possibly 
iterating multiple times to refine the entities. 5) 
Initiates the SQL generation process upon 
confirmation. 
    The agent maintains context across multiple turns, 
allowing users to modify or append information 
incrementally. 

B. Analytical Entities Extraction 

    User queries often contain implicit assumptions 
and domain-specific language that can lead to 
misinterpretation. To address this, we decompose 
queries into analytical entities. 

●​ Metrics: The quantitative measures or KPIs 
to be calculated. 

●​ Dimensions: Attributes to break down the 
metrics (e.g., by category or time). 

●​ Filters: Constraints applied to the data (e.g., 
specific countries or websites). 

●​ Additional Information: Any extra details or 
clarifications needed. 

For example, when a user asks “How many 
door-to-door orders did we have in Poland, in the Car 
Parts category for B2C sellers, in 2025 by calendar 
month, and how much revenue did we make from 
these orders?” We analyze it as 

●​ Metrics: door-to-door orders, revenue 
●​ Sites: olx.pl 
●​ Dimensions to break down by: month 
●​ Time period filter: between 2025-01-01 and 

2025-12-31 
●​ Offer category filter: Car Parts 
●​ Other filters: seller type is B2C 

C. Retrieval of Similar Questions and Metrics 

    The decomposition of analytical entities enables 
scoped knowledge retrieval, allowing each 
component to be processed and refined separately. 
   To augment the SQL generation process, the system 
harnesses a knowledge base that consists of user 

questions with the specific metrics involved and the 
corresponding SQL query that extracts the required 
data. The primary retrieval strategy leverages the 
metric names—extracted from the user question in 
the previous step—to perform focused searches 
within this knowledge base. 
    The system employs several search methodologies: 
a) Embedding Search: Utilizes vector embeddings to 
associate metric names with historically analogous 
queries. b) Keyword Search: Implements direct 
textual matching to capture exact term occurrences. 
c) BM25 Algorithm: Applies a probabilistic model 
based on term frequency to rank the relevance of 
documents. These methods may occasionally 
overlook domain-specific nuances. For example, 
while the terms "order" and "transaction" might 
appear semantically similar, they denote distinct 
concepts within the OLX context. To mitigate such 
ambiguities, an auxiliary agent further refines the 
candidate results by incorporating company-specific 
terminologies. 
   Complementary to metric-based retrieval, the 
system maintains a dedicated repository for 
previously extracted dimensional filters, such as site 
identifiers and offer categories. This approach 
enables efficient query augmentation by selectively 
incorporating only the relevant filters when specific 
categories or site constraints are detected in the user 
query. By maintaining these filters separately, the 
system achieves greater modularity and substantially 
reduces prompt complexity. This selective 
augmentation strategy is particularly beneficial given 
the potentially unlimited variations of filter 
combinations across the marketplace ecosystem. 

D. SQL Generation Agent 

  With refined analytical entities and relevant 
example queries, the SQL Generation Agent 
constructs the SQL query: It uses retrieved queries as 
templates, adapting them to the current context. It 
works with detailed information about database tables 
and columns that is automatically extracted from the 
retrieved example queries. It adjusts the query based 
on specific dimensions and filters provided by the 
user. 
   When the agent identifies the need to include 
additional tables not present in the example queries 
(particularly for implementing user-requested 
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dimensional breakdowns or filters), it has access to a 
tool that can fetch documentation for these additional 
tables on demand. This allows the agent to explore 
join paths and related tables as required. 

E. Execution and Error Handling 

    The generated SQL query is executed against the 
database, with careful handling of potential errors: 
Any database errors are captured and returned to the 
SQL Generation Agent. The agent iteratively 
modifies the query based on error messages, 
re-executing until successful or a maximum number 
of attempts is reached. Upon successful execution, 
only the results along with the final SQL query are 
presented to the User Interaction Agent, deliberately 
excluding the extensive table documentation and 
knowledge retrieval artifacts used during generation. 
This approach significantly reduces token length in 
the conversation, which not only improves system 
performance but also enhances accuracy by 
maintaining focus on the essential information when 
presenting insights to the user. 

IV. SYSTEM EVOLUTION AND ITERATIONS 

    The current system architecture emerged through 
several iterations, each addressing limitations 
discovered during development and testing. 
    Topic-based Single Agent Approach: Our initial 
implementation used a single agent where users 
selected a topic before asking questions. This agent 
then loaded pre-defined sample queries and table 
documentation for that topic. This proved ineffective 
due to: a) Limitations on the number of sample 
queries that could be included in context, b) Inability 
to handle cross-topic questions, c) Overwhelming the 
context with irrelevant table documentation. 
    Retrieval by Embedding the whole User Question: 
We evolved to a RAG-based approach that 
dynamically fetched relevant sample SQL queries 
based on the user question. However, 
embedding-based retrieval introduced new 
challenges. When embedding entire user questions 
(containing dimensions like country, site, category), 
these dimensions disproportionately influenced 
similarity matching. For example, the user question 
"the number of listings in Poland in January 2025 in 
the fashion category" incorrectly matched with "the 
number of orders in Poland in January 2025 in the 

fashion category" with a high cosine similarity of 
0.87, despite the key metrics being different (listings 
vs. orders). Meanwhile, a question containing the 
same metric type - "number of orders in Poland in 
2023" - achieved only 0.67 similarity. This 
phenomenon, which we term "dimension 
dominance", occurs when contextual elements in the 
embedding space overpower the semantic 
significance of key analytical concepts like metrics 
and KPIs. The standard cosine similarity measure 
between normalized embedding vectors fails to 
prioritize these business-critical distinctions when 
they represent only a small portion of the overall 
token set in the query. 
    Metric-Focused Retrieval: We found that focusing 
retrieval on the extracted metrics rather than the 
entire question produced significantly better results. 
This approach prioritizes the metric (calculating 
listings vs. orders) over circumstantial dimensions, 
reduces noise from contextual details that should be 
handled separately as filters, and improves the 
relevance of retrieved examples for SQL generation. 
    This iterative refinement process led to the current 
architecture that separates analytical entity extraction 
from knowledge retrieval, improving both precision 
and flexibility. Enabled by the customized RAG- 
based approach, the current system can look up data 
in 20 different database tables, and answer questions 
about 94 distinct metrics. 

V. EVALUATION AND LESSONS LEARNED 

    Given the innovative nature of the system, the 
absence of established public benchmarks 
necessitated a tailored approach to evaluate its 
performance. To address this, we developed a custom 
Slack bot designed to respond to data-related queries 
within a dedicated Slack channel. The channel 
comprised 128 testers representing diverse roles, 
including Data Analysts, Product Managers, and 
members of the leadership team. Participants were 
instructed to pose real-world, data-driven questions 
encountered in their daily workflows. The quality of 
the bot’s responses was assessed through user 
feedback via thumbs-up or thumbs-down reactions to 
its replies. 
    Over a six-month testing period, the bot answered 
852 questions, of which only 51 were rated 
negatively. The overall satisfaction rate is 94%. 
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    The development of this agentic system has 
yielded valuable insights that can inform future 
implementations in natural language data retrieval. 
Combining deterministic methods with large 
language models has proven to be a superior 
approach, as deterministic processes reduce 
unpredictability, cost, and execution time while 
enhancing reliability—particularly evident in tasks 
like SQL parsing for table name extraction, or 
handling domain-specific terminologies through 
automated abbreviation replacement and maintained 
glossaries has been crucial for reducing confusion 
and improving accuracy. The system's modular 
architecture, separating concerns across distinct 
agents, significantly improves maintainability and 
makes it easier to identify where an improvement is 
needed. 
  Furthermore, the implementation of user 
confirmation loops ensures alignment between 
system understanding and user intent, substantially 
reducing the likelihood of erroneous data retrieval. 
Breaking down complex queries into smaller, 
manageable components has simplified processing 
and enhanced the system's ability to handle 
complexity. The structured extraction of analytical 
entities, combined with similarity-based retrieval 
methods, has improved SQL query precision, while 
enabling the SQL Generation Agent to iterate based 
on database error messages has enhanced query 
generation robustness. This balanced integration of 
AI flexibility with deterministic precision 
demonstrates the potential for creating efficient and 
accurate natural language interfaces for complex data 
retrieval tasks across specialized domains. 

VI. CONCLUSION 

   We have presented an agentic system that 
effectively translates natural language queries into 
SQL statements, enabling users with little or no SQL 
skills to run complex data queries for insights. Our 
multi-agent architecture handles domain-specific 
ambiguities through interactive user confirmation, 
enabling precise data retrieval while democratizing 
data access for users with varying levels of technical 
expertise. This modular approach demonstrates 
significant advantages in complex data environments 
like OLX, while remaining adaptable to other 
domain-specific challenges. The system was tested 

with over 850 real-world queries during a six-month 
evaluation period, achieving 94% positive user 
ratings—validating its practical utility in 
democratizing data access while providing a scalable 
framework for domain-specific optimization. Up until 
now, the system has already replied to more than 
9000 user messages. Future research will explore the 
scalability enhancements and the integration with 
broader data ecosystems to further augment the utility 
of this approach. 
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