
Agentic AI System for Data-Driven Question Answering Using SQL
Generation with Large Language Models

Atacan Durmusoglu
Principal Product Analyst

OLX Group
Berlin, Germany

atacan.durmusoglu@olx.com

Ming Zhang
Principal Data Scientist

OLX Group
Amsterdam, Netherlands

ming.zhang@olx.com

Jessy Neves
Senior Data Engineer

OLX Group
Lisbon, Portugal

jessy.neves@olx.com

Miguel Chin
Data Engineering Manager

OLX Group
Lisbon, Portugal

miguel.chin@olx.com

Andreas Merentitis
Chief Data Officer

OLX Group
Berlin, Germany

andreas.merentitis@olx.com

 Abstract—In the realm of data analytics, translating
natural language queries into executable SQL
statements remains a complex challenge, particularly
within domains rich in context-specific terminology and
intricate data schemata. This paper introduces an
agentic system designed to interpret user questions,
extract analytical entities, generate and execute SQL
queries to retrieve the desired data insights. Developed
in the context of OLX, a global online classifieds
marketplace with diverse platforms and categories, the
system addresses ambiguities inherent in natural
language and domain-specific jargon. By decomposing
user queries into refined analytical entities, leveraging
deterministic methods alongside Large Language
Models (LLMs), and employing a modular agent-based
architecture, the system achieves efficient and reliable
translation of user intent into data retrieval operations.
In testing, the system dynamically queries 20 tables to
answer questions about 94 metrics and achieved a 94%
satisfaction rate from users. We discuss the
architecture, components, implementation details, and
lessons learned offering insights for future research in
data-driven conversational agents.

 Keywords—Agentic systems, SQL generation, large
language models, data analytics, conversational agents.

I. INTRODUCTION

 The surge in data-driven decision-making has
intensified the need for tools that bridge the gap
between natural language and data retrieval
languages like SQL. Users often possess domain
expertise but lack proficiency in formal query
languages, creating a demand for systems that can
accurately interpret and execute data queries
expressed in everyday language.

 OLX, a leading global online classifieds
marketplace, operates multiple platforms across
various countries, encompassing a multitude of
categories such as goods, services, real estate, and
motors. The complexity of OLX's data ecosystem,
compounded by nuanced terminologies and
overlapping concepts, poses significant challenges in
automating the translation of user questions into SQL
queries.
 This paper presents an agentic system designed to
address these challenges by decomposing user
queries into analytical entities, resolving ambiguities
through user interaction, and leveraging both
deterministic methods and LLMs for query
generation. Our contributions include:

●​ A modular architecture that separates
concerns and allows for extensibility.

●​ Techniques for handling domain-specific
ambiguities and terminologies.

●​ Integration of deterministic parsing and
LLMs to optimize performance and
reliability.

●​ Methods for dynamic retrieval and
augmentation of knowledge bases within the
query generation process.

II. RELATED WORK

 Translating natural language into SQL has been a
focus of research for years [1][2], with approaches
ranging from rule-based systems [3] to more recent
work that leverages transformer architectures [4].
 Agent-based AI has gained traction, offering
modularity and the ability to handle complex tasks

1307ISBN: 978-9-46-459362-4 EUSIPCO 2025

through the interaction of specialized agents [5][6].
The integration of LLM-based agents for SQL query
generation has been explored by a variety of
approaches [7].
 Our work differentiates itself by combining
agent-based architecture with structured outputs,
retrieval methods with LLMs, and deterministic
methods [8], tailored for the complexities of OLX's
data environment.

III. SYSTEM ARCHITECTURE

 The system is designed as a collection of
interacting agents, each responsible for specific tasks
in the process of translating user questions into SQL
queries. The main components are:

●​ User Interaction Agent: Manages the
dialogue with the user, handles clarification,
and orchestrates the overall process.

●​ Analytical Entities Extraction Agent: Parses
user queries to extract metrics, dimensions,
filters, and other relevant entities.

●​ Similar Questions Retrieval Agent: Searches
a knowledge base of previous queries and
SQL statements to find relevant examples.

●​ SQL Generation Agent: Generates SQL
queries based on refined user intent,
examples, and documentation.

●​ Execution and Error Handling Module:
Executes the SQL queries and manages
errors during execution.

 These agents are interconnected through a
workflow that relies on tool-invoking mechanisms.
Each agent has the discretion to call the appropriate
tools as needed, allowing for dynamic interaction
based on the context of the task.
 For instance, after the User Interaction Agent
gathers initial input, it may invoke the Analytical
Entities Extraction Agent to parse the query.
Subsequently, the Similar Questions Retrieval Agent
may be called to fetch relevant examples that inform
the SQL Generation Agent when the User Interaction
Agent decides we have enough information to
proceed with the data analysis. SQL Generation
Agent fixes the query by looking at the error returned
from the database. This modular approach enables
agents to iterate on their tasks, refining their outputs
until the SQL query is successfully generated and
executed.

Fig. 1. System Architecture

1308

A. User Interaction Agent

 The User Interaction Agent serves as the
coordinator, guiding the user through the process: 1)
Receives the user's natural language query. 2) Calls
the Analytical Entities Extraction Agent to parse the
query. 3) Presents the extracted entities to the user for
confirmation. 4) Handles user feedback, possibly
iterating multiple times to refine the entities. 5)
Initiates the SQL generation process upon
confirmation.
 The agent maintains context across multiple turns,
allowing users to modify or append information
incrementally.

B. Analytical Entities Extraction

 User queries often contain implicit assumptions
and domain-specific language that can lead to
misinterpretation. To address this, we decompose
queries into analytical entities.

●​ Metrics: The quantitative measures or KPIs
to be calculated.

●​ Dimensions: Attributes to break down the
metrics (e.g., by category or time).

●​ Filters: Constraints applied to the data (e.g.,
specific countries or websites).

●​ Additional Information: Any extra details or
clarifications needed.

For example, when a user asks “How many
door-to-door orders did we have in Poland, in the Car
Parts category for B2C sellers, in 2025 by calendar
month, and how much revenue did we make from
these orders?” We analyze it as

●​ Metrics: door-to-door orders, revenue
●​ Sites: olx.pl
●​ Dimensions to break down by: month
●​ Time period filter: between 2025-01-01 and

2025-12-31
●​ Offer category filter: Car Parts
●​ Other filters: seller type is B2C

C. Retrieval of Similar Questions and Metrics

 The decomposition of analytical entities enables
scoped knowledge retrieval, allowing each
component to be processed and refined separately.
 To augment the SQL generation process, the system
harnesses a knowledge base that consists of user

questions with the specific metrics involved and the
corresponding SQL query that extracts the required
data. The primary retrieval strategy leverages the
metric names—extracted from the user question in
the previous step—to perform focused searches
within this knowledge base.
 The system employs several search methodologies:
a) Embedding Search: Utilizes vector embeddings to
associate metric names with historically analogous
queries. b) Keyword Search: Implements direct
textual matching to capture exact term occurrences.
c) BM25 Algorithm: Applies a probabilistic model
based on term frequency to rank the relevance of
documents. These methods may occasionally
overlook domain-specific nuances. For example,
while the terms "order" and "transaction" might
appear semantically similar, they denote distinct
concepts within the OLX context. To mitigate such
ambiguities, an auxiliary agent further refines the
candidate results by incorporating company-specific
terminologies.
 Complementary to metric-based retrieval, the
system maintains a dedicated repository for
previously extracted dimensional filters, such as site
identifiers and offer categories. This approach
enables efficient query augmentation by selectively
incorporating only the relevant filters when specific
categories or site constraints are detected in the user
query. By maintaining these filters separately, the
system achieves greater modularity and substantially
reduces prompt complexity. This selective
augmentation strategy is particularly beneficial given
the potentially unlimited variations of filter
combinations across the marketplace ecosystem.

D. SQL Generation Agent

 With refined analytical entities and relevant
example queries, the SQL Generation Agent
constructs the SQL query: It uses retrieved queries as
templates, adapting them to the current context. It
works with detailed information about database tables
and columns that is automatically extracted from the
retrieved example queries. It adjusts the query based
on specific dimensions and filters provided by the
user.
 When the agent identifies the need to include
additional tables not present in the example queries
(particularly for implementing user-requested

1309

dimensional breakdowns or filters), it has access to a
tool that can fetch documentation for these additional
tables on demand. This allows the agent to explore
join paths and related tables as required.

E. Execution and Error Handling

 The generated SQL query is executed against the
database, with careful handling of potential errors:
Any database errors are captured and returned to the
SQL Generation Agent. The agent iteratively
modifies the query based on error messages,
re-executing until successful or a maximum number
of attempts is reached. Upon successful execution,
only the results along with the final SQL query are
presented to the User Interaction Agent, deliberately
excluding the extensive table documentation and
knowledge retrieval artifacts used during generation.
This approach significantly reduces token length in
the conversation, which not only improves system
performance but also enhances accuracy by
maintaining focus on the essential information when
presenting insights to the user.

IV. SYSTEM EVOLUTION AND ITERATIONS

 The current system architecture emerged through
several iterations, each addressing limitations
discovered during development and testing.
 Topic-based Single Agent Approach: Our initial
implementation used a single agent where users
selected a topic before asking questions. This agent
then loaded pre-defined sample queries and table
documentation for that topic. This proved ineffective
due to: a) Limitations on the number of sample
queries that could be included in context, b) Inability
to handle cross-topic questions, c) Overwhelming the
context with irrelevant table documentation.
 Retrieval by Embedding the whole User Question:
We evolved to a RAG-based approach that
dynamically fetched relevant sample SQL queries
based on the user question. However,
embedding-based retrieval introduced new
challenges. When embedding entire user questions
(containing dimensions like country, site, category),
these dimensions disproportionately influenced
similarity matching. For example, the user question
"the number of listings in Poland in January 2025 in
the fashion category" incorrectly matched with "the
number of orders in Poland in January 2025 in the

fashion category" with a high cosine similarity of
0.87, despite the key metrics being different (listings
vs. orders). Meanwhile, a question containing the
same metric type - "number of orders in Poland in
2023" - achieved only 0.67 similarity. This
phenomenon, which we term "dimension
dominance", occurs when contextual elements in the
embedding space overpower the semantic
significance of key analytical concepts like metrics
and KPIs. The standard cosine similarity measure
between normalized embedding vectors fails to
prioritize these business-critical distinctions when
they represent only a small portion of the overall
token set in the query.
 Metric-Focused Retrieval: We found that focusing
retrieval on the extracted metrics rather than the
entire question produced significantly better results.
This approach prioritizes the metric (calculating
listings vs. orders) over circumstantial dimensions,
reduces noise from contextual details that should be
handled separately as filters, and improves the
relevance of retrieved examples for SQL generation.
 This iterative refinement process led to the current
architecture that separates analytical entity extraction
from knowledge retrieval, improving both precision
and flexibility. Enabled by the customized RAG-
based approach, the current system can look up data
in 20 different database tables, and answer questions
about 94 distinct metrics.

V. EVALUATION AND LESSONS LEARNED

 Given the innovative nature of the system, the
absence of established public benchmarks
necessitated a tailored approach to evaluate its
performance. To address this, we developed a custom
Slack bot designed to respond to data-related queries
within a dedicated Slack channel. The channel
comprised 128 testers representing diverse roles,
including Data Analysts, Product Managers, and
members of the leadership team. Participants were
instructed to pose real-world, data-driven questions
encountered in their daily workflows. The quality of
the bot’s responses was assessed through user
feedback via thumbs-up or thumbs-down reactions to
its replies.
 Over a six-month testing period, the bot answered
852 questions, of which only 51 were rated
negatively. The overall satisfaction rate is 94%.

1310

 The development of this agentic system has
yielded valuable insights that can inform future
implementations in natural language data retrieval.
Combining deterministic methods with large
language models has proven to be a superior
approach, as deterministic processes reduce
unpredictability, cost, and execution time while
enhancing reliability—particularly evident in tasks
like SQL parsing for table name extraction, or
handling domain-specific terminologies through
automated abbreviation replacement and maintained
glossaries has been crucial for reducing confusion
and improving accuracy. The system's modular
architecture, separating concerns across distinct
agents, significantly improves maintainability and
makes it easier to identify where an improvement is
needed.
 Furthermore, the implementation of user
confirmation loops ensures alignment between
system understanding and user intent, substantially
reducing the likelihood of erroneous data retrieval.
Breaking down complex queries into smaller,
manageable components has simplified processing
and enhanced the system's ability to handle
complexity. The structured extraction of analytical
entities, combined with similarity-based retrieval
methods, has improved SQL query precision, while
enabling the SQL Generation Agent to iterate based
on database error messages has enhanced query
generation robustness. This balanced integration of
AI flexibility with deterministic precision
demonstrates the potential for creating efficient and
accurate natural language interfaces for complex data
retrieval tasks across specialized domains.

VI. CONCLUSION

 We have presented an agentic system that
effectively translates natural language queries into
SQL statements, enabling users with little or no SQL
skills to run complex data queries for insights. Our
multi-agent architecture handles domain-specific
ambiguities through interactive user confirmation,
enabling precise data retrieval while democratizing
data access for users with varying levels of technical
expertise. This modular approach demonstrates
significant advantages in complex data environments
like OLX, while remaining adaptable to other
domain-specific challenges. The system was tested

with over 850 real-world queries during a six-month
evaluation period, achieving 94% positive user
ratings—validating its practical utility in
democratizing data access while providing a scalable
framework for domain-specific optimization. Up until
now, the system has already replied to more than
9000 user messages. Future research will explore the
scalability enhancements and the integration with
broader data ecosystems to further augment the utility
of this approach.

REFERENCES

[1] V. Zhong, C. Xiong, and R. Socher, "Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement
Learning," arXiv:1709.00103 [cs.CL], 2017.
[2] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, "Natural
language interfaces to databases—an introduction," Journal of
Natural Language Engineering, vol. 1, no. 1, pp. 29–81, 1995.
[3] F. Li and H. V. Jagadish, "Constructing an interactive natural
language interface for relational databases," Proceedings of the
VLDB Endowment, vol. 8, no. 1, pp. 73-84, 2014.
[4] Y. Mellah, A. Rhouati, E. H. Ettifouri, and B. Toumi, "SQL
generation from natural language: A sequence-to-sequence model
powered by the transformers architecture and association rules,"
Journal of Computer Science, vol. 17, no. 5, pp. 480-489, 2021.
[5] J. S. Park, J. C. O'Brien, C. J. Cai, M. R. Morris, P. Liang, and
M. S. Bernstein, "Generative agents: Interactive simulacra of
human behavior," arXiv:2304.03442 [cs.HC], 2023.
[6] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z.
Chen, J. Tang, X. Chen, Y. Lin, W. X. Zhao, Z. Wei, and J. Wen,
"A survey on large language model based autonomous agents,"
Front. Comput. Sci., vol. 18, no. 6, Mar. 2024, doi:
10.1007/s11704-024-40231-1.
[7] X. Zhu, Q. Li, L. Cui, and Y. Liu, "Large language model
enhanced text-to-SQL generation: A survey," arXiv:2410.06011
[cs.DB], 2024.
[8] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N.
Goyal, H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel,
and D. Kiela, "Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks," arXiv:2005.11401 [cs.CL],
2021.

1311

