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Abstract—This paper considers robust sparse beamforming
(RSB) designs for a radar receive array via minimax and
maximin signal-to-interference-plus-noise ratios (SINRs) criteria
(assuming mismatches on the signal-of-interest steering vector
and the interference-plus-noise covariance matrices) with a spar-
sity constraint on the beamvector. We first propose an approx-
imation algorithm for the RSB solution for the minimax SINR
problem, where a re-weighted /;-norm regularization method is
exploited to account for the sparsity requirement (by means of a
tailored penalty term to the objective) and each problem of the
underlying sequence of optimizations is recast into a semidefinite
programming (SDP) problem by the strong duality theory. We
show how to retrieve an optimal beamvector for the regularized
minimax problem from the optimal solution to the SDP. For the
RSB solution to the maximin SINR problem, an approximation
algorithm is established similarly to the previous situation, but
with the difference that the regularized maximin problem is
transformed into a second-order cone programming problem.
The latter approximation algorithm is computationally lighter
than the former when the size of the array is sufficiently large.
Simulation examples are presented to demonstrate the improved
performance of the proposed two RSB solutions in terms of the
normalized beampattern and array output SINR, compared to
two existing non-robust sparse beamformers.

Index Terms—Robust sparse beamforming, minimax and max-
imin SINRs, /;-norm regularization, semidefinite programming,
second-order cone programming.

I. INTRODUCTION

Robust adaptive beamforming (RAB) techniques have been
popular and powerful tools in signal processing applications
such as radar, wireless communications, sonar, speech, and so
on within the past two or three decades. Among them, the
robust sparse beamforming (RSB) approaches are envisioned
as viable means to accomplish spatial signal processing due
to their capability of achieving large spatial apertures with
a reduced hardware complexity (see, e.g., [1] for sparse
array beamforming). In a radar signal processing context, the
RSB solution is useful to mitigate the effects of harmful
interferences while using much less radar channels.

Typically, the RSB is framed as an RAB optimization prob-
lem with an additional cardinality constraint on the beamvec-
tor, where the RAB optimization problem can be commonly
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formulated according to minimax or maximin criteria for the
array output signal-to-interference-plus-noise ratio (SINR), ac-
counting for mismatches between the presumed and the actual
steering vectors (SVs) of the signal-of-interest (SOI), and
inaccurate estimation of the interference-plus-noise covariance
(INC) matrices [2]. Some RAB problems in terms of minimax
and maximin SINRs are nonconvex and hard to solve up to the
global optimality [3], and RAB problems with the cardinality
constraint are even more challenging.

Nowadays, there are numerous existing non-robust sparse
beamforming techniques in open literature [1], [4]—[8], there-
fore, it is possible to frame RSB optimization problems lever-
aging on the heritage of the non-robust sparse beamforming
techniques. In particular, a re-weighted /;-norm regularization
method has been attractive and widely applied to promote
sparsity [4]. For instance, the authors in [5] utilize the re-
weighted [;-norm squared relaxation to search for a sparse
transmit beamvector such that the transmit power is minimized
subject to each user’s quality of service guaranteed in the
form of per-user SINR greater than or equal to a threshold
in a downlink communication system. The sparsity of the
transmit beamvector is ruled through a bisection search over
the penalty parameter A. Besides, a non-robust sparse receive
beamforming problem aimed at maximizing the array output
SINR for a scenario with multiple SOI sources is studied
in [6], and a re-weighted [;-norm regularization approach
is applied by updating the weight vector; Then a large-size
semidefinite programming (SDP) relaxation problem for the
non-robust sparse beamforming problem with the re-weighted
l1-norm squared term is solved in each iteration [6]. In con-
trast, in [7], the same non-robust sparse beamforming problem
is investigated wherein the re-weighted /;-norm regularization
problem is solved by the alternating direction method of
multipliers (ADMM), in order to reduce the computational
complexity.

On the other hand, more and more sophisticated approaches
have been developed to solve the RAB optimization problem
via minimax SINR or maximin SINR criterion in the literature
(see, e.g. [2], [3], [9]-[12] and their references). For example,
the minimum variance distortionless response (MVDR) robust
beamformer can be derived by solving a minimax SINR
problem under some convex/nonconvex uncertainty sets for
the SOI SV [10]. Moreover, the maximin SINR problem
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seeks a beamvector that maximizes the worst-case SINR over
uncertainty sets of the parameters, which includes similarity
constraints, double-sided norm constraints, or robust sidelobe
level control [10], [11], [13]. These methods highlight the
effectiveness of robust optimization in enhancing adaptive
beamforming performance under practical uncertainties.

In [14], the authors study the design of an RSB problem
that maximizes the worst-case SINR under the uncertainty
in the signal’s direction of arrival, modeled as a presumed
angle together with an error interval. By relaxing the sparsity
constraint into a set of linear constraints, the RSB solution is
obtained solving a sequence of linear programming problems.
In contrast, the RSB solution approaches for optimization
problems via minimax and maximin SINR criteria are men-
tioned in [15].

In this paper, we present the RSB designs by tackling the
optimization problems of minimax and maximin SINRs, under
convex uncertainty sets for both the SOI SV and the data
covariance. To obtain an effective RSB solution for minimax
SINR problem, we approximate the original design problem
introducing a penalty term proportional to the /;-norm of a
re-weighted beamvector, and reformulate it into an equivalent
SDP problem using the strong duality theory [16]. Then, in
each iteration of the proposed approximation algorithm, a
sequence of small-scale SDP problems are solved for a given
positive penalty parameter enforcing the beamvector sparsity.
Hence, the RSB solution is obtained by iteratively updating the
parameter until the desired sparsity level of the beamvector
is achieved. In this context, we also show how to recover
an optimal beamvector for minimax SINR problem with a
regularized term from the SDP solution via the complementary
conditions. As to RSB solution for maximin SINR problem,
we employ a similar technique to relax the cardinality con-
straint and transform the maximin optimization with a regu-
larized term into a second-order cone programming (SOCP)
problem. Therefore, the different steps in the algorithm for
the RSB solution for maximin SINR problem include solving
an SOCP problem to obtain an optimal beamvector, rather
than an SDP and finally recovering an optimal beamvector.
Simulation results demonstrate that the proposed RSBs achieve
higher array output SINRs and improved beampatterns than
two existing non-robust sparse beamforming methods.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let us consider the SOI from a point signal source imping-
ing on N sensors of a receive narrowband ULA. The receive
signal is expressed by

y(t) = s(t)a +i(t) + n(t), M

where the statistically independent components s(t)a, #(t),
and n(t) are the SOI, interference and noise, respectively, and
s(t) and a are the SOI waveform and SV, respectively. The
beamformer outputs the signal

z(t) = wy(t), 2)

1318

where w € CV is the beamvector and (-)* represents the
conjugate transpose. Accordingly, the array output SINR can
be calculated as

2w aaw

SINR = Wl R ow 3)
where o2 is the SOI power and R, ,, is the INC matrix.

In practical applications, the INC matrix R;y, is usually
unavailable and the SOI SV a can be only inaccurately
predefined. Therefore, R;;, and a are respectively replaced
in (3) by the data sample covariance matrix

. 1 &
R=23 yty" (), @
t=1

and the presumed SOI SV a in (3). Then, maximizing the ap-
proximate 1SINR leads to the well-known MVDR beamformer
w*=R a.

However, the MVDR beamformer performance degrades
quickly due to the mismatches between the nominal and the
actual parameters [9]. In order to address this issue, the RAB
techniques employing minimax and maximin SINR criteria [2]
appear interesting:

L e |lwHal?
minimize  maximize i , 5)

acA,,Res, wew wH Rw

and oo
maximize  minimize 1% @l , (6)

WEW:  gea, Res, WIRW

where A; and B; are the uncertainty sets for the SOI SV
a and the INC matrix R (the subscript is dropped here and
afterward for notational simplicity), respectively, and W, is
the set of feasible beamvectors.

In many radar applications (e.g., sparse array radar, target
detection and localization, and cognitive radar [3], [6], [8],
[14]), a constraint on the beamvector’s cardinality could be
additionally required in RAB design problems (5) and (6),
namely, the feasible set of beamvectors is defined as

Wi = {w e CV\ {0} | wllo = L}, @)
where the positive integer L is smaller than N and |w|o
means the total number of the nonzero elements of w.

III. ROBUST SPARSE BEAMFORMING VIA MINIMAX SINR
AND MAXIMIN SINR OPTIMIZATIONS
In this section, we propose approximation algorithms for
RSB solutions for the two design problems.
A. Robust Sparse Beamforming via Minimax SINR Criterion

Suppose that uncertainty set .A; is modeled as a ball
constraint:
Ar={a|la-al3<e}, ®)

where || - ||2 is an l3-norm for a vector, and B includes all
positive semidefinite matrices satisfying a similarity constraint:

Bi={R||R-R|} <v, R=0}, ©)



where || - || denotes the Frobenius norm.
It is not hard to reexpress problem (5) with the sparsity
beamvector constraint as

maximize

minimize w Rw,
aEAhREBl

(10)
wew;

where the feasible set Wi = W; N W, with W, =
{w | R(wHa) > 1}. In order to tackle problem (10), a popular
and efficient way is to apply the /;-norm regularization method
and penalize the cost function [4] obtaining the following
design problem

maximize

minimize w” Rw + Ao © w);,
acA, ReB,

WeW, an
where ® denotes the Hadamard product, A > 0 is a penalty
factor to be updated for the desired sparsity in w, and b*)
is the re-weighting vector in the k-th iteration. Specifically,
to determine an effective RSB solution to (10), a sequence of
problems (11) must be solved, and each of them is handled
according to the following steps. First, select a proper A via
a bisection search (see, e.g., [7, Remark 3]). Second, solve
maximin problem (11) fixing (A, b("')) for £k > 0 (for any
initial point, say b = 1), obtaining w¥); hence, update

b =10 (jw®]+¢) >0, (12)
and solve (11) with (A, b(k'H)) again, until convergence
or k > kpax. Here, 1 is the all-one vector, € © y =
[@1/y1, - an/yn]E, |2| = [|21],...,|zn]]T, and a small
¢ > 0 is fixed to guarantee a nonzero denominator. Third,
check whether the RSB solution w™* satisfies the cardinality
condition (7), and if it is fulfilled, output this RSB solution
for (10); otherwise, repeat the first and second steps.

In the described method, a nontrivial step includes how to
solve maximin problem (11), given (}, b(k)). In what follows,
we show how it can be converted into an SDP and retrieving
an optimal solution w* from the complementary slackness
conditions. To begin with, the inner minimization problem of
(11) can be expressed as an SOCP

T
minimize s2 + b ¢
s,'l.U,t
subjectto R(aw) > 1, (13)
t>|wl,
s> |[R2w]s,

where s and t are auxiliary variables. It is not hard to derive
the dual problem of (13), another SOCP, as follows

7.2
maT)’(zifr?}ize vy +z (14a)
subjectto  Ab™*) > |za + Ry, (14b)
r > lyll2, (14c)
2> 0, (14d)
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and the corresponding complementary conditions are

R((za)"w) — 2z =0, (15a)

t"(Ab™) + R((za + R*y) w) =0, (15b)
25— 1 =0, (15¢)

rs + Ry"R7w) = 0. (15d)

Consequently, the maximin problem (11) can be equivalent-
ly transformed into the following maximization problem:

’l“2

maximize —— 4z (16a)

rzY,a, R 4

subjectto  |la — a2 < Ve, (16b)
IR - R||r < /7, (16¢)
R >0, (16d)
z >0, (16e)
(14b), (14c¢) satisfied. (16f)

It appears that problem (16) is a nonconvex optimization
problem since (14b) now is nonconvex. However, by letting

w:=za,v:= Ry, d:=1r2 (17)

and utilizing the Schur complement lemma, problem (16) can
be reformulated as the following SDP:

(TSET,'?‘; - g +z (18a)
subjectto A > |u + ], (18b)
lu — zalls < Vez, (18¢)
IR~ Rllr < V7, (18)
{i 1}:} =0, (18e)
z > 0. (18%)

In other words, the maximin problem (11) is tantamount to
SDP problem (18). Suppose that the SDP is solvable and
(d*, z*,u*,v*, R*) is an optimal solution. Then, we have
to recover an optimal solution (w*, a*, R*) for the maximin
problem (11) leveraging on the optimal solution for the SDP.
It is trivial that (a*, R*) = (u*/z*, R*). For the optimal
w*, we claim the following lemma based on complementary
conditions (15).

Lemma IIL1 Suppose that (d*, z*, u*,v*, R*) is an optimal
solution for SDP problem (18) for given ()\,b(k)). Then, it

holds that 1
w* = 7§(R*)71U*

is optimal for problem (11) together with (a*,R*) =
(u*/2*, R").

(19)

Starting from the aforementioned results, we can now
establish the approximation procedure for the design of an
effective RSB beamformer w* (with ||w*|[o = L) for the



Algorithm 1 Approximation Algorithm for RSB Problem (10)

Input: R, a, L, ¢, v, A, Au, C, kEmax;
Output: An RSB solution w* for problem (10);
1: setw =1;
2: while ||w|p # L do
3 letk=0and b¥ = 1, and set A = (\p + \p)/2;

4. while no convergence and k < ky,.x do

5: solve SDP (18), obtaining (v*, R*);

6: construct @ = —(R*)~!v* /2 and set w*) = w;
7: update weight vector p+L by (12);

8: k:=k+1;

9:

end while

10: w:=wkb;

1: Ap =\ if ||lwllo > L, or Ay := A, if ||w|lo < L;
12: end while

13: output w* = w.

minimax problem (10) with a sparsity constraint as described
in Algorithm 1.

Remark that in step 4, the convergent condition |fz) —
foe—1l < 1073 is adopted with f) = ('w(k))HR'wEk% +
AB*® © w® ||, and J(=1) = 0 (suppose no convergence for
k=0,i.e., f(o) > 1073), kay = 6 (the same number reported
in [6]).

B. Robust Sparse Beamforming via Maximin SINR

For RSB via maximin SINR, problem (6) can be recast as

minimize W a|?
Qe Ay

maximize i oimize wi Raw’ (20)
€B,
which amounts to (cf. [12], [17])
. w (R+ sDw
Toews.  mae{wral— e} @b

Therefore, problem (21) can be approximated by an SOCP
problem with a regularization term

minimize w (R + Vw + M[B® © wy
subjectto R(wfa) > 1+ /e||wl|.

Finally, the proposed algorithm for an RSB solution via the
maximin problem (6) can be formulated in a way similar to
Algorithm 1, but for replacing steps 5 and 6 in Algorithm
1 with one step: solving SOCP problem (22), obtaining a

solution w* and letting w® = w*.

(22)

IV. SIMULATION RESULTS

In this section, we conduct numerical experiments to val-
idate the effectiveness of the proposed RSB solutions for
minimax and maximin SINR problems. The metrics we adop-
t are the array beampattern and the output SINR for the
proposed RSB solutions and two existing non-robust sparse
beamformers.

Let us consider a scenario involving a ULA with N = 12
omnidirectional sensors evenly spaced at half-wavelength in-
tervals. The noise power at each sensor is set to 0 dB. We
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assume that two interfering signals, each with an interference-
to-noise ratio (INR) of 30 dB, impinge on the sensor array
from directions +30°. The presumed direction of the SOI
is 0°, while its actual arrival direction is 1°. The training
sample size T is fixed to 100, and the output results in the
figures are averaged over 200 independent simulation runs.
In our numerical experiments, we define the sparsity of the
beamvectors by setting L = 4 out of the N sensors in the
ULA.

In addition to the mismatch in the look direction of the
SOI SV, we also include SOI SV’s discrepancies caused by
wavefront distortion in an inhomogeneous medium, which
is the same as the setting in [18, Simulation Example 2].
Precisely, independently random increment phase distortions
are accumulated by the components of the actual SV, and
within every simulation run, the phase increments following a
Gaussian distribution A/(0,0.03) remain unchanged, but with
the zero phase distortion in the first element of the SV.

The two existing non-robust sparse beamformers are adopt-
ed for the purpose of comparison, namely, the non-robust
sparse beamformers proposed in [6] and [7]. In figures, they
are denoted by “Non-robust sparse beamformer via SDR” and
“Non-robust sparse beamformer via ADMM?”, respectively.
Moreover, the proposed RSB solution for the minimax S-
INR problem (by Algorithm (1)) and the RSB solution for
the maximin SINR problem (stated in subsection III-B), are
termed as “RSB via minimax SINR” and “RSB via maximin
SINR”, respectively. All the four robust beamformers share the
same sample data covariance matrix R and the radius square
4 = 0.1||R|| p. The square of spherical radius, €, of the error
set for the SOI SVs is set to 0.1V.

1) Example 1: In this example, the feasible interval for the
parameter \ is set as [Ar, A\y] = [1,500], and ¢ = 0.01. Fig.
1 illustrates the normalized beampatterns of our two proposed
robust sparse beamformers along with the non-robust sparse
beamformers for the same signal-to-noise ratio (SNR) of 5 dB.
It can be observed that the two proposed RSB vectors lead
to almost the same beampattern and provide lower sidelobe
than the other two non-robust approaches while along the
interference directions, all the considered methods provide
nulls deep enough. Furthermore, the mainlobe peaks of the
normalized beampatterns of the RSBs are aligned with the
actual arrival direction of the SOI while the non-robust sparse
beamformers’ mainlobe peaks do not match the SOI’s arrival
direction clearly. This implies that the robust designs provide
some degree of their RSB solutions immunity with respect to
mismatchs between the actual and the presumed SOI SVs and
between the INC and the data sample covariance matrices.

2) Example 2: In this example, we set [Ap,\y] =
[0.1,1000] and remain ¢ = 0.01. We test how the array output
SINR is affected by the SNR in the range [—10, 20] dB. Fig. 2
shows again that the robust designs for the sparse beamformers
lead to an improved resilience in terms of the beamformer
output SINRs, compared to the existing non-robust designs of
sparse beamformers. In addition, an inspection of the figure
highlights that the performance of the two proposed RSBs



coincides, as per Example 1. It is worth noting that for a fixed
sparsity pattern of the beamformers, the equivalence between
minimax and maximin SINRs is ensured [2]; particularly, this
equivalence holds true at a per-iteration level in the proposed
RSB algorithms. And, that is why the same sparsity patterns
occurred along the iterations, as seen in our experiments.

We report that the best A (corresponding to the desired
sparsity of the beamvector) can be found in around five
iterations as observed in both case studies 1 and 2.
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Fig. 1. Normalized beampatterns of the four beamformers.
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Fig. 2. Output SINR versus input SNR of the four beamformers.

V. CONCLUSION

We have considered RSB designs via the minimax and
maximin SINR criteria with a sparsity constraint on the
beamvector under the assumption of a convex uncertainty
set of SOI SVs and INC matrix. We have established an
approximation algorithm for the minimax SINR problem via
a re-weighted /;-norm regularization method and rewriting
the minimax problem with a regularized term into an SDP
problem. We have shown how to retrieve an optimal solution
for the regularized minimax problem from an optimal solution
of the SDP, which is necessary in each iteration of the
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proposed algorithm. For the maximin SINR problem with
a sparsity constraint, the approximation algorithm has been
similarly built, but in this case the regularized problem can be
rewritten into an SOCP, and thus the computational burden for
the RSB solution for maximin SINR problem is lighter than
that for minimax SINR counterpart, especially when the size
N of the array is sufficiently large. The simulation examples
have demonstrated that the RSB solutions via minimax and
maximin SINRs outperform the existing two non-robust sparse
beamformers in terms of the normalized beampattern and array
output SINR.
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