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Abstract—Road safety applications for automotive scenarios
rely on the ability to estimate the vehicles positions with high
precision. Global navigation satellite systems (GNSS) and, in
particular the global positioning system (GPS), are commonly
used for self-localization, but especially in urban vehicular
scenarios, due to obstructions, it may not provide the require-
ments of crucial position-based applications. In this paper, we
investigate the potential of GPS-free positioning schemes and, in
particular, we propose a localization algorithm in which each
vehicle estimates its position exploiting range and azimuth radar
measurements of an assigned set of landmarks with known
position. At the analysis stage, we compare the performance to
a Cramér-Rao lower bound (CRLB).

Index Terms—Positioning, radar.

I. INTRODUCTION

Road safety applications are emerging as an important
feature of intelligent transportation systems (ITS). However,
such applications pose numerous challenges for which ultimate
solutions are still unavailable. One of the most important issues
is how to guarantee accurate position information in the very
diverse automotive scenarios [1], [2]. The global positioning
system (GPS) is widely used for localization; however, as
recent studies [3] show, the accuracy and availability of the
GPS signal cannot always meet the requirements of crucial
position-based applications. For instance, in dense urban en-
vironments, accuracy and availability of the GPS are limited
by satellite visibility interruption, vehicle dynamics, and local
errors (e.g., receiver noise and multipath) [4]. Preliminary
research efforts, e.g., [5]–[7], have tackled this problem by
focusing on standalone positioning systems that combine GPS
data with additional measurements gathered from kinematic
sensors available on board (Dead Reckoning, INS, etc.).

In recent years, vehicular ad-hoc networks (VANETs) [8]
have been proposed by the automotive research community
as a mean to realize a connected road environment where
vehicles and infrastructure components can communicate to
improve their location awareness [9]–[12]. In a VANET GPS-
free positioning techniques can take advantage of the beacon
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packets transmitted from roadside units (RSUs), possibly in
a cooperative fashion by jointly processing position-related
data exchanged among a group of VANET nodes [13]. A
receiver can exploit either range measurements based on
received signal strength (RSS), time of arrival (TOA), and
time difference of arrival (TDOA) [9], [14], [15] or angle of
arrival (AOA) measurements [16]–[19] associated with signals
transmitted from nearby anchors to determine its own position.
Specifically, in [17] the authors investigated a vehicle-to-
infrastructure (V2I) scenario where a vehicle equipped with an
array of antennas is able to determine its position processing
several AOA estimates collected by the vehicle along its trajec-
tory; AOAs are obtained by the multiple signal classification
(MUSIC) algorithm on the basis of packets broadcast by a
road-side unit (RSU) in known position while the trajectory is
reconstructed resorting to local INS measurements performed
by the vehicle. This approach turns out to outperform GPS
in urban environments. A cooperative tracking algorithm ex-
ploiting AOA measurements, obtained by processing beacon
packets associated to vehicle-to-vehicle (V2V), in addition
to V2I, communications, is investigated in [18]. In [19]
localization based on several beacons is considered and an
algorithm to estimate the AOAs in presence of mutual coupling
and eventually the vehicle position is proposed; the limiting
performance are assessed in terms of errors on the estimated
AOAs.

Radar systems, a mature technology for remote sensing and
surveillance, are widely used in a large variety of applications.
In particular, radars have gained momentum for automo-
tive applications, see [20] for an overview of state-of-the-
art signal processing in automotive radars. Moreover, radar-
based approaches to self-localization have been investigated
for both indoor and outdoor scenarios [21]–[24]. [21] proposes
a method that can be used in robots equipped with millimeter
wave (mmWave) radars to estimate their position by taking
advantage of the interference produced by other radars located
in the same environment with well known position. The robot
positions are computed using only the AOA of each radar
interference. [22] provides an extensive performance analysis
of an off-the-shelf mmWave radar sensor for people localiza-
tion and tracking. In [24] the vehicle’s position is inferred
by association of landmark observations with map landmarks.
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Millimeter wave radars are a viable and low-cost solution,
already available on vehicles, which have the potential to
guarantee high accuracy localization at a low computational
cost, also under adverse weather conditions. Finally, in [25]
the limiting performance of a vehicle that estimates its position
exploiting range and/or angle measurements of an assigned set
of landmarks with known position is investigated.

In this paper, we focus on the derivation and performance
assessment of a positioning algorithm based on measurements
collected by radars mounted on a vehicle; the algorithm is
capable of extracting from the set of detected targets the
landmarks surrounding the vehicle and eventually determining
the vehicle position. The achievable performance is compared
with the Cramér-Rao lower bound (CRLB) calculated in [25].
The paper is organized as follows: next section describes the
problem from a quantitative standpoint and introduces the
proposed algorithm while Section III discusses performance
of the algorithm. Conclusions are given in Section IV.

A. Notation

In the sequel, vectors are denoted by boldface letters, the
acronym RV means random variable. Finally, we write x ∼
N(m,σ2) if x is a Gaussian RV with mean m and variance
σ2.

II. PROBLEM FORMULATION AND ALGORITHM DESIGN

As previously mentioned, we are concerned with the prob-
lem of determining the position of a vehicle and we restrict
our attention to localization in the planar case. We assume
that the vehicle is equipped with a radar and that it is located
at P (x, y) within a given area somehow delimited by N
landmarks located at Li(xl(i), yl(i)), h), i = 1, . . . , N, in
a given Cartesian reference system. Of course, when the
radar illuminates the environment, other unwanted phenomena
emerge, such as unintended scatterers, noisy point clouds,
multipath effects, range ambiguities, etc. Under the above
assumptions, we suppose that the radar is able to measure the
range and azimuth of the N landmarks of known positions
and, in addition, of a certain number of unintended scatterers.
We also assume that the heading of the vehicle is known and,
for the sake of clarity, that it is aligned with the y-axis.

Assuming for the moment that the vehicle is able to
select the landmarks (correct data association), we denote by
d(P,Li) the distance of the radar to the ith landmark, i.e.,

d(P,Li) =
√
(x− xl(i))2 + (y − yl(i))2 + h2 (1)

and by θi the angle formed by the projection of the line
joining P and Li onto the x − y plane and oriented from
P towards Li, dx−y(P,Li) say, and the y-axis, positive if
measured counterclockwise,

θi = arcsin
x− xl(i)

dx−y(P,Li)
, (2)

with

dx−y(P,Li) =
√
(x− xl(i))2 + (y − yl(i))2.

Fig. 1. An example of the positioning system with N = 4 landmarks. Vehicle
is located at P (x, y) and the angle θ2 is measured on the x− y plane.

A pictorial description of the system geometry is shown in
Fig.1.

Moreover, we model the estimation errors as zero-mean
Gaussian RVs; thus, the measurements of range and az-
imuth can be modeled as Ri ∼ N(d(P,Li), σ

2
r) and

Θi ∼ N(θi, σ
2
θ) and, in addition, we suppose that the RVs

R1,Θ1, . . . , RN ,ΘN are independent. It is important to stress
that the Gaussian model for estimation errors of range and
azimuth is widely adopted also due to its mathematical
tractability [26]. However, other more accurate models could
be considered; for instance, the von Mises distribution has
been used to model AOA measurement errors in direction
finding systems [27].

Recalling that we have assumed that the vehicle trajectory
is parallel to the y-axis, it is possible to determine the vehicle
position from the i-th north-east or north-west landmark using
the formulas

x̂i = xl(i) +Ri sinΘi,

ŷi = yl(i)−Ri cosΘi

and, similarly, it is possible to compute the coordinates of the
vehicle from the ith south-east or south-west landmark as

x̂i = xl(i) +Ri sinΘi,

ŷi = yl(i) +Ri cosΘi.

Strictly speaking, Ri is a measurement of d(P,Li), while cor-
rect estimation of the coordinates would require measurements
(or estimates) of dx−y(P,Li), i.e., the projected ranges. Since
such estimates are not available or not immediately calculable,
in this paper we use Ri as an approximation. Due to the
fact that we are working with noisy measurements, observe
that we now have N estimates of vehicle coordinates that are
different from one landmark to another. In order to come up
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with the final, hopefully more accurate, estimate we propose
to compute x̂ and ŷ as the sample mean of single estimates:

x̂ =
1

N

N∑
i=1

x̂i,

ŷ =
1

N

N∑
i=1

ŷi.

(3)

Alternatively, we can use the sample median of the x̂is and
ŷis, i = 1, . . . , N . To be more formal, let x̂(i) and ŷ(i) the
order statistics of x̂i and ŷi, i = 1, . . . , N . The estimator of
the vehicle position can be written in this case as

x̂ =

{
x̂(N+1

2 ), if N is odd
1
2

[
x̂(N

2 )
+ x̂(N

2 +1)

]
, if N is even

ŷ =

{
ŷ(N+1

2 ), if N is odd
1
2

[
ŷ(N

2 )
+ ŷ(N

2 +1)

]
, if N is even

(4)

Up to this point, we have assumed that the true landmarks
were correctly associated with the corresponding measure-
ments. However, in practice, the output of a detector is a
map of targets (each characterized by range, azimuth, and
velocity) and the data association problem naturally arises
due to the presence of other targets that could be mistaken
for landmarks. To solve such problem we assume that the
landmarks transmit their position and that the vehicle is also
equipped with arrays of linear antennas (or more complicated
configurations) to be used to estimate the AOAs of the signals
transmitted by the landmarks. Such additional information can
be exploited by the vehicle to identify the landmarks through
comparison of their AOAs with azimuth measurements of the
targets as viewed by the radars. The data association problem
could also be solved by a joint processing of range and angle
measurements. To this end, a coarse estimate of the vehicle
position is necessary. Such estimate can be obtained from
AOAs or, for vehicles not equipped with an array of antennas,
from the GPS. The analysis conducted in the next section only
assumes a selection of the landmarks based on comparison of
angular measurements.

III. PERFORMANCE ANALYSIS

In this section we use Monte Carlo (MC) simulation to
assess the performance of the proposed radar-based self-
positioning algorithm based on range and azimuth estimates
of the landmarks’ positions. To this end, we assume N =
4 landmarks placed as follows: L1(−d, 0, h), L2(d, 0, h),
L3(−d,−100, h), and L4(d,−100, h); the height with respect
to the radar is h = 2.5 m. The vehicle moves over a uniformly
sampled trajectory parallel to the y-axis, with sampling rate
1 m; more precisely, we consider the positions of a vehicle
along a straight line of length 80 m, starting at x = x0 m
and y = −90 m and ending at x = x0 m and y = −10
m. At each MC run we also add NF = 4 “false landmarks”
(one false landmark per true landmark). The positions of such
false landmarks are randomly chosen with uniform distribution
within squares of side S = 10 m centered on the positions

of the true landmarks. The height of false landmarks is set to
hF = 3.5 m. Azimuth and range radar measurements from true
and false targets are generated as independent and normally
distributed RVs with mean equal to the corresponding true
value and standard deviation σr = 1 m in range and σθ = 2◦

in azimuth; AOA measurements are also independent and nor-
mally distributed RVs with mean equal to the corresponding
true value and standard deviation σθ = 2◦. The number of
MC trials is set to 105.

Data association is handled in the following way. Let
Φ = [ϕ1 · · ·ϕn] be the vector containing AOAs measured
by the array mounted on the front of the vehicle1 and let
Γ = [γ1 · · · γn+nF

] the vector of the azimuthal values mea-
sured by the radar for the same angular region; for every i
from 1 to n, we set Θi = γj , with

j = argmin
i

|ϕi − Γ̃|, (5)

where Γ̃ is the vector Γ purged from the values that have
already been associated. An algorithmic representation is
reported in the following table. Similar considerations apply
to measurements collected by the array mounted on the rear
of the vehicle and the ”corresponding radar measurements.”

Algorithm: Data Association procedure
Input : Φ = [ϕ1 · · ·ϕn], Γ = [γ1 · · · γn+nF

]
Output: Θ = [Θ1 · · ·Θn]
Γ̃ = Γ;
for i = 1 : n

j = argmin |Φ(i)− Γ̃|;
Θ(i) = Γ(j);
Γ̃(j) = NaN;

end

In a first set of examples we show the performance of the
proposed positioning algorithm in terms of root mean square
(RMS) estimation error for x and y in case of perfect data
association, also in comparison to the CRLB for unbiased
estimators derived in [25]. More precisely, in Figs. 2 and 3
we plot the RMS value for d = 10 m, with x0 = 0 m and
x0 = 8 m, respectively. Inspection of the figures shows that
the value of x0 does not influence the performance for the
considered system parameters. We also observe that estimation
along y-axis is constantly under 1 meter and it is close to the
CRLB, while the RMS error along the x-axis is greater, with
the sample mean to be preferred in the center of the area and
the sample median towards the borders.

In a second set of examples we show the performance
in the case where the data association rule given by (5) is
used. Figs. 4 and 5 report the corresponding RMS estimation
errors, the remaining parameters are the same of Figs. 2 and
3, respectively. It is seen that data association produces a
performance degradation of about 0.5 m on the y-axis (black

1We assume that there are not other systems transmitting on the same
channel used by landmarks to communicate their position.

1324



-90 -80 -70 -60 -50 -40 -30 -20 -10

y [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
R

M
S

 v
a

lu
e

 [
m

]

Estimated x (mean)

Estimated y (mean)

Estimated x (median)

Estimated y (median)

CRLB on x

CRLB on y

Fig. 2. RMS estimation error curves for x0 = 0 m and perfect data
association. Blue lines: error on the x-axis, black lines: error on the y-axis.
Dashed lines: error for estimator given by (3), dotted lines: error for estimator
given by (4).
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Fig. 3. RMS estimation error curves for x0 = 8 m and perfect data
association. Blue lines: error on the x-axis, black lines: error on the y-axis.
Dashed lines: error for estimator given by (3), dotted lines: error for estimator
given by (4).

lines) while it does not affect too much the performance on
the x-axis (blue lines). More generally, estimator based upon
the sample median (4) provides a slightly better performance
with respect to the estimator based upon the sample mean (3),
this is likely due to the fact that the sample median is more
robust versus isolated wrong associations (outliers).

Finally, we present some results about the estimated vehicle
trajectory. In Fig. 6 we show an excerpt of the average of
the estimated trajectories for estimators given by (3) and (4),
together with the true trajectory. Inspection of the figure shows
that both estimators could provide a biased estimate when
the vehicle is far from the x center of the simulated area.
Even tough it is a matter of a few centimeters, the problem of
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Fig. 4. RMS estimation error curves for x0 = 0 and data association handled
according to eq. (5). Blue lines: error on the x-axis, black lines: error on the
y-axis. Dashed lines: error for estimator given by (3), dotted lines: error for
estimator given by (4).

-90 -80 -70 -60 -50 -40 -30 -20 -10

y [m]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

R
M

S
 v

a
lu

e
 [

m
]

Estimated x (mean)

Estimated y (mean)

Estimated x (median)

Estimated y (median)

CRLB on x

CRLB on y

Fig. 5. RMS estimation error curves for x0 = 8 and data association handled
according to eq. (5). Blue lines: error on the x-axis, black lines: error on the
y-axis. Dashed lines: error for estimator given by (3), dotted lines: error for
estimator given by (4).

biasedness of the estimators is worth considering.

IV. CONCLUSIONS

In this paper, we have studied the potential of GPS-free
positioning schemes for the automotive scenario and, in par-
ticular, we have proposed a localization scheme in which each
vehicle estimates its position exploiting range and azimuth
radar measurements of an assigned set of landmarks with
known position. The analysis, conducted also in comparison
to a Cramér-Rao lower bound, shows that the data association
problem may represent a critical issue with a non-negligible
impact on the achievable performance. For this reason, ongo-
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Fig. 6. Average estimated and true trajectories: x0 = 0 m (left) and x0 = 8
m (right). Data association handled according to (5).

ing research activity is oriented towards investigation of more
sophisticated data association rules.
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