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Abstract—Radio tomographic imaging (RTI) is an imaging
technique that only uses received signal strength (RSS) mea-
surements, classically on a dense mesh of transmitter-receiver
(TX-RX) pairs with precisely known positions. However, in
many practical scenarios, TX locations may be uncertain due
to deployment constraints, mobility, or reliance on ambient RF
sources. This paper investigates RTI in an extremely sparse
setting, where only a few TXs (potentially just one) with uncertain
positions are available, leading to a severe reduction in the
number of TX-RX links and increased reconstruction challenges.
We formulate the joint image reconstruction and TX localization
problem and propose both optimal and suboptimal algorithms.
The suboptimal algorithm, in particular, achieves near-optimal
performance while maintaining linear complexity with respect to
the number of TXs, in contrast to the exponential complexity of
the optimal approach. Comparative evaluations against worst-
case and stochastic robust approximation methods demonstrate
the superior reconstruction accuracy of our proposed techniques.

Index Terms—radio tomographic imaging, image reconstruc-
tion, received signal strength, localization.

I. INTRODUCTION

Radiofrequency (RF) tomography is an imaging technique,
particularly attractive when optical or acoustic methods are
impractical [1]–[3]. Radio tomographic imaging (RTI) specif-
ically leverages attenuation of RF signals — measured through
received signal strength (RSS) — to infer the presence and
location of objects within a monitored area [3], [4]. This means
that no time or phase information about the signal is available;
moreover, as opposed to much higher frequency waves (e.g.,
x-rays), significant non-line-of-sight (NLOS) propagation oc-
curs. On the other hand, RSS measurements can be easily
extracted from any low-cost off-the-shelf wireless device,
making RTI an attractive solution for a variety of applications,
e.g., people localization inside buildings, monitoring in smart
home and smart city contexts, people counting and tracking
[3]–[5], and passive localization [6].

In classical RTI, RSS measurements are collected between
all transmitter-receiver (TX-RX) pairs, forming a full mesh of
wireless nodes around the area of interest [3]–[7], as depicted
in Fig. 1(a). Objects or people entering the scene induce
variations in the RSS, enabling the reconstruction of spatial
loss field (SLF) by solving an inverse problem. One of the
fundamental assumptions in RTI (and tomography in general)
is the precise knowledge of TX and RX positions [3]–[8].
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(a) Classical RTI: full-mesh TX-RX
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(b) Extremely sparse RTI: TXs (stars) with circular uncertainty region

Fig. 1: Classical vs. extremely sparse RTI. The square is a
target of interest, small circles are measurement points (RXs).

However, in some scenarios, locations of TXs and/or RXs
are uncertain due to factors such as deployment constraints,
mobility, or the use of signals of opportunity. This uncertainty
can severely degrade the quality of the reconstructed image.
Recently, [9] started to address this issue by adopting stochas-
tic robust approximation (SRA) [10, Sec. 6.4.1] and worst-case
robust approximation (WCRA) [10, Sec. 6.4.2].

In this paper, we focus on an extremely sparse scenario
where only a very small number of TXs (potentially as few
as one) are available. This results in a significant reduction
in the number of TX-RX pairs compared to full-mesh RTI, as
shown in Fig. 1(b), leading to a substantial loss of information
that makes imaging more challenging [11]. Furthermore, as
discussed above, location uncertainty should be considered.
While a similar setup has been explored in the context of pas-
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sive RF tomography [12], [13], a critical distinction lies in the
nature of the available data. In passive RF tomography, the full
waveform can be exploited for image reconstruction via low-
level signal processing. In contrast, RTI relies solely on power
measurements (RSS), thus calling for a different approach.
In this paper we formulate the RTI problem with extremely
sparse and location-uncertain TXs, and propose both optimal
and suboptimal algorithms, which are shown to significantly
outperform the robust WCRA and SRA approaches.

II. RTI: CLASSICAL VS. EXTREMELY SPARSE SCENARIOS

For the sake of imaging, the area of interest is discretized
into N voxels, i.e., pixels of the image to be reconstructed.
Fig. 1 illustrates the resulting grid (dashed lines), where each
voxel is associated with a physical position (conventionally, its
center). The RTI problem typically assumes M measurement
points surrounding the area of interest, which may corre-
spond to M single RXs or to (one or) a few RXs moving
around the perimeter (alike a synthetic aperture processing
approach, mutatis mutandis). Irrespective of how RSS values
are collected, in the conventional scenario each of the M
measurement points also acts as a TX, forming a mesh with
up to L = M(M −1) distinct links, as illustrated in Fig. 1(a).

The RSS measurement associated with the i-th link (TX-RX
pair), i = 1, . . . , L, follows the well-known path loss model
for the average received power, possibly extended to account
for wall attenuation in outdoor-to-indoor scenarios [14], and/or
to incorporate frequency dependency when multi-channel links
are considered [15]. In the RTI literature, variations between
consecutive RSS acquisitions are mostly of concern, so as to
get rid of static effects and reveal changes in the SLF [2]–[5],
[7]–[9]. Any target present in the scene will occupy a certain
number of voxels, depending on its size and shape, introducing
an additional attenuation loss along the links that cross it. In
Fig. 1, for instance, a square object located in the bottom-
right part of the scene spans 9 voxels, leading to shadowing
along the few links that intersect such voxels. The relationship
between the link difference measurements y = [y1 · · · yL]T
(TX-RX pairs in arbitrary order) and the SLF values x =
[x1 · · ·xN ]T can be modeled as [2]–[5], [7]–[9]

y = Wx+ n (1)

where the (i, j) entry of the weighting matrix W ∈ RL×N

captures the effect of the i-th link on the j-th voxel, while n
stacks zero-mean noise terms with variance σ2 (details on the
noise distribution are given in Sec. IV). A popular computation
for the values in W is via the elliptical model [2]–[5], [7]–[9],
in which the weight of pixel j on link i is

Wij =

{ 1√
di

if dTX
ij + dRX

ij < di + λ

0 otherwise
(2)

where dTX
ij and dRX

ij are the distances from the j-th voxel to the
TX-RX pair forming the i-th link, di is the distance between
TX and RX for link i, and λ is the width of the ellipse
(typically a small value, namely λ = 0.007 meters [3]).

Tomography is typically an ill-posed inverse problem, thus
requiring regularization techniques. Under the Tikhonov ap-
proach, the image reconstruction problem is stated as

x̂ = argmin
x

∥y −Wx∥2 + α∥Qx∥2 (3)

where ∥ · ∥ denotes the Euclidean norm hence ∥Qx∥2 =
xTQTQx. Different choices of the regularization matrix Q
are possible [2], [3] (further details are given in Sec. IV).

Finally, previous studies [4], [15] have shown that perfor-
mance improves when employing multi-channel communica-
tions, i.e., by measuring RSS values across multiple channels
for each link and combining them. Diversity in fact enhances
reliability by ensuring that at least one channel remains
in an anti-fade state, thereby enabling accurate attenuation
measurements when the link LOS is obstructed.

Instead of the classical RTI setup, this paper considers an
extremely-sparse scenario with very few TXs, i.e., K ≪ M
(even as low as K = 1) in uncertain positions, as shown in Fig.
1(b). This means that the number of links is drastically reduced
from L = M(M − 1), which scales quadratically with M , to
only L = KM , which scales linearly with M (since K is a
small constant), as apparent by comparing Fig. 1(a) and Fig.
1(b). Consequently, much less information is available to solve
the image reconstruction problem. Furthermore, uncertainty
in TX positions can degrade performance if not properly
accounted for. In the next section, we formulate the joint
RTI and TX position estimation problem, derive its optimal
solution, and propose a low-complexity suboptimal algorithm.

III. JOINT RTI AND TX POSITION ESTIMATION

We stack all the K unknown TX positions {pk}Kk=1 ∈ R2×1

in p = [pT
1 · · ·pT

K ]T ∈ R2K×1, and assume that an uncertainty
region pk ∈ Pk ⊂ R2×1 is available, which represents a
coarse prior information on each TX’s position. Then, the joint
estimation problem is

x̂OPT, p̂OPT = argmin
x,p

∥y −W (p)x∥2 + α∥Qx∥2 (4)

where we have highlighted that now W ∈ RKM×N depends
upon p through di and dTX

ij , via (2), and have omitted the
variables’ optimization domains to ease the notation. By
minimizing over x, treating it as a function of p, we obtain

x̂OPT(p) = (W T(p)W (p) + αQTQ)−1W T(p)y (5)

which, plugged back in (4), returns

min
p

min
x

{
∥y −W (p)x∥2 + α∥Qx∥2

}
= min

p

∥∥∥∥(I−W (p)
(
W T(p)W (p)+αQTQ

)−1

W T(p)

)
y

∥∥∥∥2
(6)

with I the identity matrix. Minimization over p does not admit
a closed-form solution. Given the highly non-convex nature of
the objective function (6), standard solvers are unable to find
the global minimum, hence a 2K-dimensional grid search is
adopted to determine the optimal solution p̂OPT over Pks. The
image is then reconstructed by plugging p̂OPT back in (5).
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Unfortunately, the complexity of the search grows expo-
nentially with the number of TXs K, making the optimal
algorithm impractical even for small K, as it will be also
discussed in the numerical results of Sec. IV.

To overcome this limitation, we consider a suboptimal
approach that decouples the search over the K TX positions
pk ∈ Pk, by relaxing the problem formulation. Specifically,
we decompose the problem into K independent subproblems,
each focusing on a single TX. This involves processing a
reduced version of (1), where instead of the full vector y, only
the M -dimensional subvector corresponding to the links in-
volving the k-th TX is processed. By appropriately reordering
and partitioning the variables as y = [yT

1 · · ·yT
K ]T ∈ RKM×1,

W = [W T
1 · · ·W T

K ]T ∈ RKM×N , and n = [nT
1 · · ·nT

K ]T ∈
RKM×1, we obtain K submodels for yk ∈ RM×1 as follows

yk = Wkx+ nk (7)

hence in turn K suboptimal problems involving Wk ∈ RM×N

p̂SUB
k = argmin

pk

(
W T

k (pk)Wk(pk) + αQTQ
)−1

W T
k (pk)yk

(8)
which can be all solved independently in pk ∈ Pk ⊂ R2×1, for
an overall complexity that scales linearly with K. Once the K
TX position estimates p̂SUB

k are obtained, a single overall image
reconstruction is finally performed by considering the original
full-size problem, that is, by using (5) with W (p̂SUB) in place
of W (p), where p̂SUB = [(p̂SUB

1 )T · · · (p̂SUB
K )T]T ∈ R2K×1.

IV. NUMERICAL RESULTS

A. Simulation Setup

To evaluate the reconstruction performance, we consider a
setup similar to that of Fig. 1(b), for both the single-TX case
(using only the red TX) and the two-TX case (with both the
red and blue TXs) as detailed below. The data y are generated
based on the experimentally validated model in [3], with noise
terms accounting for multipath fading variations; this means
that the generation process is not matched to (1). Experiments
in [3] indicate that RSS values vary slowly around a nearly
constant mean but can also experience significant fading dips
over certain periods. This behavior is well characterized by
a two-state Markov chain, which alternates between low-
variance and high-variance log-normal distributions.1 Follow-
ing [3], we adopt the same model parameters, generating noise
terms (in dB) according to a two-component Gaussian mixture
with standard deviations of 0.971 (weight 0.548) and 3.003
(weight 0.452). An attenuation of −20 dB is applied to links
affected by shadowing due to the presence of a target.

As in most RTI literature, we adopt as regularizer Q =
C−1/2, where C is the covariance matrix of x whose (h, l)
entry typically follows the exponential model [2]–[5], [7]–[9]
Chl = σ2

xe
−dhl/δc with dhl the distance from pixel h to pixel

l, δc is a “space constant” correlation parameter, and σ2
x is the

1As observed in [3], both the log-normal distribution and the logarithm of
a Rician distribution (since RSS values are expressed in dB) provide a good
fit for experimental data due to their similar shapes.

pixel variance. We adopt the same parameters as in [3], i.e.,
δc = 1.3 meters and σ2

x = 0.1 square dB. We set α = 1.
We will compare the proposed algorithms against robust RTI

approaches under position uncertainty [9], namely the SRA
[10, Sec. 6.4.1] and WCRA [10, Sec. 6.4.2]. Such approaches
need to be properly adapted to the extremely-sparse scenario
considered here, as illustrated in the following.

B. Results for the Single-TX Case

We first consider the single-TX case, aiming at ascertaining
to what extent imaging is still possible in such a challenging
setup, where the available information is very scarce. We
consider an area of 20 × 20 square meters with a spatial
resolution of 0.5 meters, resulting in a discretized SLF x of
size N = 800. The number of RX points is M = 116.

For a fair comparison, we assume a square uncertainty
region of 2 × 2 square meters around the single TX for all
algorithms, with a step size of 0.2 meters. This yields a grid
of P = 100 2-dimensional points, denoted as p̃(1), . . . , p̃(P ).

The WCRA approach minimizes the worst-case error within
the uncertainty region, formulated as [10, Sec. 6.4.2]

min
x

max
m=1,...,P

∥∥∥y −W (p̃(m))x
∥∥∥ (9)

and then recast in equivalent epigraph form as

min
x,t

t s.t.
∥∥∥y −W (p̃(m))x

∥∥∥ ≤ t, m = 1, . . . , P. (10)

This formulation results in a second-order cone programming
problem, which is efficiently handled by standard solvers.

The SRA approach considers instead the minimization of
the mean error [10, Sec. 6.4.1], i.e.,

min
x

E
∥∥∥y −W (p̃(m))x

∥∥∥ (11)

which over the considered uncertainty region reads as

min
x

P∑
m=1

πm

∥∥∥y −W (p̃(m))x
∥∥∥ (12)

where πm is the probability associated with point p̃(m),
with the constraint

∑P
m=1 πm = 1. Assuming a uniform

distribution over the uncertainty region (πm = 1/P ), (12) can
be rewritten in epigraph form as a sum-of-norms problem:

min
x,t

1Tt s.t.
∥∥∥y −W (p̃(m))x

∥∥∥ ≤ tm, m = 1, . . . , P (13)

where t = [t1 · · · tP ]T and 1 denoting the vector of ones. Like
the WCRA, this is a second-order cone programming problem
that can be solved using standard numerical methods.

Fig. 2 presents the reconstructed images from left to right:
the “oracle” (which uses the exact TX position), the proposed
approach, and the two competitors WCRA and SRA — in the
single-TX case, suboptimal algorithms obviously boil down
to the corresponding optimal ones. Notably, even the oracle
reconstruction reveals the inherent difficulty of the single-TX
case, as evidenced by the presence of a “streak“ pattern in Fig.
2(a), which suggests ambiguities in mapping the presence of
the target. Still, the proposed approach provides a satisfactory
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Fig. 2: Reconstructed images for the single-TX case: (a) “oracle” reconstruction using the exact TX position; (b) proposed
approach; (c) WCRA and (d) SRA.

Fig. 3: Reconstructed images for the two-TX case: (a) “oracle” reconstruction using the two exact TXs positions; optimal
versions of the (b) proposed approach, (c) WCRA, and (d) SRA.

Fig. 4: Reconstructed images for the two-TX case: (a) “oracle” reconstruction using the two exact TXs positions; suboptimal
versions of the (b) proposed approach, (c) WCRA, and (d) SRA.

image reconstruction, qualitatively close to that of the oracle.
In contrast, the competitors yield more “noisy” images.

C. Results for the Two-TX Case

We now consider the case of two TXs (K = 2). Again, for
a fair comparison, all algorithms assume a square uncertainty
region of 2 × 2 square meters around each TX, with step
0.2 meters, resulting in a joint search grid of P = 100
2K-dimensional points p̃(m). In other words, the search is
conducted over P possible pairs of TXs, each represented as
a 2K-tuple of coordinates, i.e., p̃(m) = [p̃

(m)T
1 · · · p̃(m)T

K ]T,
m = 1, . . . , P . For K = 2, the resulting 4-dimensional search
space is computationally intensive, making it impractical to
compute the optimal versions of the algorithms (both proposed
and competitors). Indeed, as discussed earlier, suboptimal
algorithms are needed. However, to evaluate the possible loss

in reconstruction accuracy, we consider a reduced-size sce-
nario where computation of optimal algorithms is still viable;
specifically, an area of 15 × 15 square meters corresponding
to N = 112, and M = 120 RX points.

For a thorough assessment, we add to the analysis subopti-
mal versions of SRA and WCRA. As to the latter, for a fair
comparison we consider the same matrix partitioning as in
Sec. III, which leads to an optimization problem similar to
(10) but with KP constraints (instead of P ) and reduced-size
subvectors and submatrices as in (7), i.e.

min
x,t

t s.t.
∥∥∥yk −Wk(p̃

(m))x
∥∥∥ ≤ t,

m = 1, . . . , P
k = 1, . . . ,K

.

As to SRA in (13), its suboptimal version is likewise obtained:

min
x,t

1Tt s.t.
∥∥∥yk −Wk(p̃

(m))x
∥∥∥ ≤ tm,

m = 1, . . . , P
k = 1, . . . ,K

.
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Fig. 5: Distributions of the reconstruction errors.

Fig. 3 reports the reconstructed images for the two-TX case,
comparing the optimal versions of the proposed approach,
WCRA, and SRA, with the “oracle” (exact TXs positions).
The reconstruction accuracy achieved by the oracle in Fig.
3(a) is notably superior to its single-TX counterpart in Fig.
2(a). This confirms that incorporating just one additional TX
considerably improves the reconstruction quality. Remarkably,
Fig. 3(b) shows that the optimal proposed algorithm achieves a
reconstruction accuracy very close to that of the oracle, despite
the additional challenge of estimating the two unknown TX
positions, and outperforms both the WCRA and SRA.

Fig. 4 shows instead the results for the suboptimal algo-
rithms, again in comparison with the oracle. Remarkably, the
proposed suboptimal approach achieves near-optimal perfor-
mance, whereas the two competing methods exhibit signifi-
cantly poorer reconstruction quality.

Finally, ten different target positions are considered to
quantitatively assess both reconstruction accuracy and com-
plexity. Fig. 5 illustrates the estimated probability distributions
of the reconstruction errors, computed as ∥x−x̂∥

∥x∥ , using the
kernel density method. The results clearly demonstrate that
the proposed approach consistently outperforms the competi-
tors, achieving near-optimal performance. Moreover, this is
accomplished with a significantly lower computational burden:
indeed, as also discussed in Sec. III, optimal resolution of
the RTI problem under TX position uncertainty comes with
increased computational complexity due to the expansion of
the search space — in this case from two to four dimensions.
To show further evidence of the computational advantage of
the suboptimal approach, Fig. 6 presents the relative reduction
in average computational time, with 100% representing the
most time-consuming algorithm (SRA). Once again, the sub-
optimal approach achieves a remarkable computational saving
compared to the optimal solution(s), while still delivering near-
optimal performance.

V. CONCLUSION

We have addressed the RTI problem in the challenging
scenario of extremely sparse and location uncertain TXs, de-
riving both optimal and suboptimal algorithms for joint image
reconstruction and TX position estimation. Results show that
RTI remains feasible even with a single TX. Moreover, the
proposed algorithms significantly outperforms state-of-the-art

0 20 40 60 80 100
Normalized Complexity (%)

Suboptimal

Optimal

Proposed Algorithm
WCRA
SRA

7.67

97.5
90

7.51
7.42

100

Fig. 6: Average elapsed-time computational complexity.

robust approaches, with the suboptimal version achieving near-
optimal performance at a fraction of the computational com-
plexity, scaling linearly with the number of TXs as opposed
to the exponential complexity of the optimal approach.
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