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Abstract—This paper presents a novel blind watermarking
scheme for online handwritten signatures using the Discrete
Cosine Transform (DCT). The proposed method embeds im-
perceptible watermarks into the high-frequency components of
handwriting signals while preserving biometric recognition per-
formance. Experimental results on the MCYT signature dataset
show that the approach does not degrade recognition accuracy
when embedding a 40-bit watermark (20 bits in the x-coordinate
and 20 in the y-coordinate). This 40-bit capacity is sufficient to
encode a timestamp, allowing the system to trace the time of
signature creation. Despite these modifications, the watermark
remains detectable, and signature recognition remains effective.
Furthermore, the embedded timestamp provides a mechanism
for detecting replay attacks, enhancing security in biometric
authentication systems.

Index Terms—biometrics, signature recognition, watermark,
DCT

I. INTRODUCTION

Watermarking is a well-established technique for embedding
imperceptible information into signals, ensuring authenticity,
copyright protection, and tamper detection [1] , [2]. In the
context of online handwritten signals, watermarking plays a
crucial role in preserving authorship and preventing unau-
thorized modifications. Among the various watermarking ap-
proaches, blind watermarking techniques stand out due to their
ability to extract the embedded information without requiring
the original unmarked signal. One effective approach for blind
watermarking of online handwritten signals involves the Dis-
crete Cosine Transform (DCT), which provides a robust and
efficient means of embedding and extracting watermarks while
maintaining signal integrity. Despite the extensive research on
watermarking in multimedia content such as images, audio,
and video, as well as its applications in biometric signals like
fingerprints and iris recognition, the field of online handwrit-
ten signal watermarking remains significantly underexplored.
The dynamic and sequential nature of handwriting signals
presents unique challenges that differ from those encountered
in traditional multimedia and biometric data. Consequently,
there is a pressing need for more research to develop effective
watermarking schemes tailored to the specific characteristics
of online handwritten signals. To date, only a limited number
of studies have addressed watermarking techniques for online
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handwriting. The existing literature includes [3], which inves-
tigates time-domain methods based on Least Significant Bit
(LSB) modification and difference expansion, and [4], which
explores non-blind watermarking techniques in the transform
domain. These approaches provide foundational insights into
the field, but there remains a gap in the development of
robust blind watermarking methods, particularly those lever-
aging frequency-domain transformations like the DCT. This
paper aims to bridge this gap by proposing a novel blind
watermarking scheme for online handwritten signals using
DCT, ensuring a balance between imperceptibility, robustness,
and security.

A. Types of Watermarking

Watermarking methods can be broadly classified [5] into the
following types based on various criteria:

• Visible vs. Invisible Watermarking: Visible watermark-
ing embeds perceptible information, such as logos or text,
directly onto the signal, whereas invisible watermarking
ensures that the embedded information remains imper-
ceptible under normal conditions.

• Robust vs. Fragile Watermarking: Robust watermark-
ing is designed to withstand signal processing operations
such as compression, filtering, and noise addition. In con-
trast, fragile watermarking is sensitive to modifications
and is primarily used for tamper detection.

• Blind vs. Non-Blind Watermarking: Blind watermark-
ing does not require access to the original unmarked
signal for extraction, making it highly suitable for real-
world applications. Non-blind watermarking, on the other
hand, requires the original signal for verification.

• Spatial vs. Transform Domain Watermarking: Spatial
domain watermarking embeds information directly into
the signal samples, whereas transform domain techniques,
such as those based on DCT, embed the watermark in
the frequency coefficients, enhancing robustness against
various attacks.

By leveraging DCT-based blind watermarking techniques,
it is possible to embed imperceptible yet resilient watermarks
into online handwritten signals. The application of DCT allows
for selective embedding in frequency components that are less
susceptible to noise while preserving the essential charac-
teristics of the handwriting. This method ensures a balance
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between imperceptibility, robustness, and security, making it
a promising approach for protecting digital handwriting data.

II. BLIND DCT WATERMAKING

Blind watermarking using the Discrete Cosine Transform
(DCT) involves embedding information into a signal in such
a way that the original unmarked signal is not required for
extraction. This ensures greater flexibility and practicality in
real-world scenarios, where access to the original data may
be limited or impractical. The proposed blind DCT-based
watermarking technique consists of the following steps:

A. Watermark Embedding

The watermark embedding process is designed to integrate
timestamp information into the Discrete Cosine Transform
(DCT) domain of online handwritten signatures while main-
taining signal integrity. The steps are as follows:

1) Apply the 1D DCT to the X and Y coordinate sequences
of the online handwritten signal (1):

DCTX = DCT (x), DCTY = DCT (y) (1)

2) Select an replace a subset of the DCT coefficients for
embedding: In the blind approach, specific coefficients
are fully replaced with the watermark values, which are
scaled by a strength factor α (2):

Cw(i) = αW (i), ∀i ∈ S (2)

where Cw(i) represents the modified DCT coefficients,
W (i) is the watermark bit sequence, S is the set of
selected coefficients for embedding, and α is the strength
factor controlling the watermark’s impact on the signal.

3) Apply the inverse DCT (IDCT) to reconstruct the wa-
termarked signal (3):

(xw, yw) = round
(
IDCT(DCT(X,Y ))

)
(3)

where the rounding operator ensures that the samples
remain integers.

Strengthening the watermark (α ↑) enhances robustness
against signal processing operations such as noise addition,
compression, and resampling, making it more secure and
easier to detect during extraction. However, increasing the
strength also introduces greater distortion in the signal, which
can negatively impact biometric recognition accuracy and
reduce imperceptibility by making the watermark more de-
tectable. This trade-off requires careful tuning of α to bal-
ance security and robustness with signal fidelity, ensuring the
watermark remains both resilient and unobtrusive in practical
applications. Figure 1 shows an example original signature
(top), its watermarked version with strength α = 20 (middle)
and with strength α = 200 (bottom). Although degradation is
evident for large α values, the signature is still legible.
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Fig. 1. Watermarked signatures with different strengths.

B. Watermark Extraction

The extraction process is blind, meaning the original signa-
ture is not required:

1) Apply the 1D DCT to the received watermarked signal:

DCTXw
= DCT (xw), DCTYw

= DCT (yw) (4)

2) Extract the watermark bits from the predefined coeffi-
cient locations (5):

W ′(i) =

{
1 if Cw(i) >

α
2 ,

0 otherwise,
∀i ∈ S (5)

Where:
• W ′(i) is the extracted bit at index i, which is either

1 or 0 depending on the comparison.
• Cw(i) is the recovered DCT coefficient at index

i (it can correspond to either the x- or y-related
coefficients).

• α is the strength of the watermark, used as the
threshold to decide the bit value.

• S is the set of indices being used for extraction.
The extraction process assigns a bit value of 1 if the
recovered DCT coefficient exceeds half of the strength
(α/2), and 0 otherwise. This binary decision rule is
applied for all indices i ∈ S.

3) In case of redundancy in the watermark, use error
correction coding techniques to enhance the robustness
of extracted watermark bits against noise and signal
degradation.

This blind DCT-based approach ensures robustness against
common signal processing operations such as noise addition,
resampling, and minor transformations. Furthermore, by fully
replacing selected DCT coefficients with watermark bits, the
technique enables a straightforward and efficient extraction
process without requiring access to the original unmarked
signal. In Figure 2, we present the temporal evolution of the x-
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and y-coordinates of the signature, along with their Discrete
Cosine Transform (DCT) representations, for the user with the
shortest signature in the database. We observe good energy
compaction in the transform domain, with the highest values
concentrated at the lowest frequencies.
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Fig. 2. Signature data representation: (top to bottom) x-coordinate, y-
coordinate, DCT of the x-coordinate, and DCT of the y-coordinate for the
user with the shortest signature in the database.

III. MATERIALS AND METHODS

A. Database

For this study, we utilize the MCYT [6] signature dataset,
which is a subset of the MCYT baseline corpus. This dataset
is specifically designed for benchmarking online handwrit-
ten signature recognition and verification methods. Figure
3 displays a histogram of the signature lengths, providing
insight into the variability within the dataset of 330 users.
The minimum length is 46 samples, and the maximum length
is 1798 samples.

Fig. 3. Histogram of the lengths of user signatures. This figure shows the
distribution of signature lengths for the dataset used in the watermarking
experiment.

The key attributes of the dataset are as follows:
• Data Collection: The signatures were acquired using

a WACOM Intuos A6 USB tablet. The device records
both and spatial coordinates, the pressure (p) exerted by
the pen, along with azimuth and altitude angles. The
sampling rate is 100 Hz with a resolution of 2540 lines
per inch.

• Participants: A total of 330 individuals contributed to
the dataset.

• Genuine Signatures: Each participant provided 25 au-
thentic signature samples.

• Skilled Forgeries: Additionally, each individual at-
tempted 25 forgeries, mimicking genuine signatures with
expertise.

B. Watermark content

We will use as watermark a timestamps with millisecond
precision into binary representation. By converting timestamps
into milliseconds since a reference epoch, we minimize storage
requirements while maintaining high accuracy. Only 40 bits
are required to represent timestamps ranging from the year
2000 to 2030, making this approach both space-efficient and
computationally simple.

Timestamps play a crucial role in avoiding replay attacks
[7], [8], [9]

To efficiently encode timestamps, we compute the total
milliseconds elapsed from a chosen epoch (e.g., 2000-01-01
00:00:00.000). The formula used is (6):

Tms = (Y−2000)×365.2425×24×60×60×1000+Mms (6)

where Y is the year, and Mms accounts for the additional
ms required to represent the full timestamp with millisecond
precision.

To determine the required bit-length, we estimate the max-
imum number of milliseconds between 2000 and 2030:

(2030−2000)×365.2425×24×60×60×1000 ≈ 9.567×1011

(7)
Since 239 = 5.497 × 1011 and 240 = 1.099 × 1012, we

conclude that 40 bits are sufficient.
This result is comparable to encoding individual compo-

nents separately (see Table I):

TABLE I
BITS REQUIRED FOR ENCODING DIFFERENT TIME COMPONENTS.

Component Range Bits Required
Year 2000-2030 5

Month 1-12 4
Day 1-31 5
Hour 0-23 5

Minute 0-59 6
Second 0-59 6

Millisecond 0-999 10

We analyzed the relationship between the length of the
signature and the Mean Absolute Error (MAE) at the last
insertion point of the watermark. As shown in Figure 4, the
scatter plot illustrates how the length of each user’s signature
affects the MAE at the final insertion point. We observe that,
the longer the signature, the smaller the distortion.

Finally, Figure 5 shows the performance of watermark
insertion in terms of MAE across the entire dataset. The top
part of the figure highlights the results for the shortest and
longest user signatures (users 16 and 256, respectively), while
the bottom part shows the MAE for all 330 users, providing a
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comprehensive overview of the watermark insertion distortion.
From this figure, we observe that to minimize distortion,
the watermark should be inserted at the last samples of the
signature.The watermark consists of 40 samples. The first 20
are inserted into the x-coordinate, and the remaining 20 are
inserted into the y-coordinate.
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Fig. 4. Signal length vs. Mean Absolute Error (MAE) at the last insertion
point. The scatter plot illustrates the relationship between the length of the
signature and the MAE value at the final watermark insertion point for each
user.

Fig. 5. MAE vs. insertion watermark point for the shortest and longest user
signatures. The figure shows the MAE for users with the shortest and longest
signatures on the top and the MAE for the entire dataset of 330 users on the
bottom.

C. Recognition Algorithm

The recognition framework models each user based on a
training set comprising five genuine signatures. For any test
signature, the system calculates the Dynamic Time Warping
(DTW) [10] distance against each of the five stored reference

signatures. The final similarity score is determined as the
minimum of these five computed distances.

Two operational modes are considered [11]:
• Identification: The DTW distance is computed for all N

enrolled users. The model yielding the lowest distance is
assigned as the recognized identity.

• Verification: The DTW distance is calculated between
the test signature and the claimed identity model. If the
computed distance falls below a pre-defined threshold, the
signature is accepted as genuine; otherwise, it is classified
as an impostor attempt. The threshold determination and
verification accuracy assessment rely on the minimum
detection cost function (minDCF) as described in [12].

D. Feature Extraction

To ensure consistency in analysis, the signature at-
tributes—including and coordinates and pressure (p) val-
ues—are first standardized by normalizing them to zero mean
and unit variance. Following normalization, dynamic features
are derived from the first and second derivatives of the
signature data. The extraction process is as follows:

First Derivative (Velocity)

The velocity components of the signature are obtained by
computing the first derivative over a window of 11 points [13].
These represent the instantaneous rates of change of position
and pressure (8):

ẋ =
dx

dt
, ẏ =

dy

dt
, ṗ =

dp

dt
(8)

Second Derivative (Acceleration)

Acceleration components are computed as the second
derivative of the signature trajectory (9):

ẍ =
d2x

dt2
, ÿ =

d2y

dt2
, p̈ =

d2p

dt2
(9)

Both velocity and acceleration values are subsequently
normalized by subtracting their mean and dividing by their
standard deviation. The final feature vector is then constructed
as (10):

vn = [xn, yn, pn, ẋn, ẏn, ṗn, ẍn, ÿn, p̈n] (10)

This vector is computed for each sampled point in the
signature.

IV. EXPERIMENTAL RESULTS

Table II presents the performance metrics obtained for
different strength values. α = 1 means that the removed
DCT coefficients are directly replaced by watermark bits,
while α = 0 means that they are simply overwritten with
zeros. The original recognition rates over the complete signal
are represented in the first row with the ”No watermark”
indication. minDCFr represents the minimum detection cost
function in verification for random forgeries, while minDCFs
corresponds to the result for skilled forgeries.
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TABLE II
PERFORMANCE METRICS FOR DIFFERENT STRENGTH LEVELS

Strength (α) IDR (%) minDCFr (%) minDCFs (%)
No watermark 98.55 1.14 3.92

0 98.55 1.14 3.92
1 98.55 1.15 3.92
21 98.55 1.15 3.92
81 98.55 1.17 3.92

500 97.82 1.39 4.18
1000 97.82 2.09 4.44

Experimental results from Table II reveals a small degrada-
tion in recognition accuracy even for large α values.

These results are not surprising, as we are primarily wa-
termarking the high-frequency content of the signal. High-
frequency components tend to carry less perceptual signifi-
cance and can often be altered without drastically affecting the
overall structure of the signal. Even if the modified coefficients
were removed, recognition could still be performed, as the
essential discriminative features reside largely in the lower-
frequency components. However, it is important to note that
the experimental results shown in Table II do not involve such
a removal process; rather, they reflect the direct impact of
watermark embedding on recognition performance.

V. CONCLUSION

In this paper, we proposed a blind watermarking approach
for online handwritten signatures based on DCT, embedding a
timestamp to prevent replay attacks while preserving biometric
recognition performance. The experimental results demon-
strated that our method introduces only a small degradation in
recognition accuracy for large α values. These results confirm
that watermarking primarily affects the high-frequency content
of the signal, leaving essential discriminative features intact. A
key advantage of this method is its blind watermarking nature,
meaning that watermark extraction does not require access
to the original unmarked signature. This makes the approach
more practical and flexible in real-world scenarios, where
storing or retrieving the original signal may be impractical.
Additionally, blind watermarking enhances scalability and
usability, as it allows for authentication and replay attack
prevention without the need for reference templates. This
property is particularly valuable in remote authentication sys-
tems and cloud-based biometric applications, where efficient
and secure verification is essential While this technique may
not be highly robust against intentional removal attacks, it is
effective in collaborative user scenarios where access control
discourages malicious tampering. Furthermore, the use of
timestamp embedding enhances security by providing protec-
tion against replay attacks. Future work could explore more
adaptive watermarking strategies to further improve robustness
while maintaining recognition accuracy.

A. Limitations

While the proposed watermarking approach may not be
highly resistant to targeted removal attacks, this is not nec-
essarily a critical limitation in a collaborative user scenario.

In environments where access to a service can be denied based
on watermark verification, there is little incentive for users to
actively attack the watermark. Instead, the technique serves its
intended purpose of embedding traceable information while
maintaining recognition performance within acceptable lim-
its. One common attack, such as rotation, can be mitigated
through de-rotation normalization applied prior to recognition.
As shown in [14], de-rotation does not significantly affect
recognition accuracies, making it a viable preprocessing step
to counteract such transformations without degrading system
performance. However, it is important to consider that signa-
tures captured using different acquisition devices may exhibit
variations in quality or dynamics, potentially affecting the
behavior of both watermarking and recognition systems.
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