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Abstract—Biometric cryptosystems like the fuzzy commitment
scheme are designed to protect sensitive biometric data through
error tolerant retrieval of keys. By binding biometric data with
cryptographic keys, the fuzzy commitment scheme facilitates
privacy-preserving biometric verification, ensuring that biometric
data remains protected even in the event of a system breach.
This paper investigates the application of the fuzzy commitment
scheme to a multi-instance biometric system using deep learning-
based feature extractors for fingerprints. By leveraging multiple
fingerprint instances, the scheme enhances both security in terms
of in False Accept Security (FAS) and recognition performance
in terms of Genuine Match Rate (GMR). Notably, a four-finger
configuration achieves a near-perfect GMR of 99.35% and a
FAS of 17.7 bits, surpassing single- and two-finger configurations.
These findings highlight the potential of multi-instance fusion for
achieving high levels of security as well as usability in biometric
cryptosystems while addressing challenges in error correction.

Index Terms—Biometric cryptosystems, fingerprint recogni-
tion, fuzzy commitment scheme, deep neural networks

I. INTRODUCTION

TORING biometric reference data, i.e. templates, for

authentication purposes poses a unique challenge: bio-
metric data is sensitive and immutable, raising significant
privacy concerns if compromised, while traditional crypto-
graphic methods like hashing cannot be directly applied due
to the inherent variability of biometric traits. Biometric Tem-
plate Protections (BTPs) [1, 2] addresses these challenges
by adhering to the requirements of biometric information
protection, facilitating privacy-preserving storage and accurate
comparison of biometric data. These requirements, as defined
in ISO/IEC IS 24745 [3], include:

Irreversibility: It should be infeasible to reconstruct biomet-
ric data from the protected template.

Unlinkability: It should be infeasible to determine if two
protected template correspond to the same individual.

Revocability and Renewability: It should be possible to is-
sue a new protected template without revealing additional
information.

Performance Preservation: The recognition accuracy of the
protected system should be comparable to that of unpro-
tected systems.
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Biometric Cryptosystems (BCSs), a category of BTP
schemes, protect biometric templates by combining biometric
data with a cryptographic key. Instead of directly comparing
biometric samples, these systems verify the validity of an
associated key, enabling indirect biometric authentication. The
fuzzy commitment scheme, is one of the most widely used
BCSs, alongside the fuzzy vault scheme. The scheme protects
a biometric template by using it as noise to conceal a cryp-
tographic key, which is encoded by an Error Correction Code
(ECC). The key can potentially be recovered by removing
the noise using a biometric probe that is sufficiently similar
(i.e., with only a correctable amount of errors) to the original
template. Since the binding between the biometric data and
the key can be reversed if the key is exposed, revealing the
original biometric data, the security of the system depends not
only on the robustness of the scheme but also on the security
of the key itself [4]. Therefore, the scheme should not only
have an adequate security level but also a sufficiently long key.

Scientific research has shown that the security levels of
biometric cryptosystems based on a single source of biometric
data are significantly lower than the security standards deemed
secure in traditional cryptography. As a result, several studies
have proposed multi-biometric template protection systems [5]
which fuse biometric data from multiple sources, e.g., multiple
characteristics or multiple instances of a single characteristic,
before applying template protection. This approach increases
the usable information within the system, thereby improving
both the accuracy and security of the BCS. However, security
is only enhanced when biometric fusion takes place at the
feature level [6], similar to using a single long password
instead of several short ones. In the case where multiple
characteristics are fused, additional challenges related to im-
balances in weighting due to varying feature lengths and
biometric variance between different characteristics arise [7].
In such systems, attackers may exploit the characteristic with
the weakest performance or the largest weight to launch false
accept attacks. By focusing on the fusion of multiple instances
of the same biometric characteristic, such as combining several
fingerprints from the same individual, these vulnerabilities can
be mitigated as the same feature extractors can be used for
each instance. With recent advancements in deep learning,
robust methods for extracting fixed-length real-valued feature
vectors from biometric characteristics, including fingerprints,
have been introduced. As the fuzzy commitment scheme
requires biometric templates to be binary vectors, these deep
learning-based feature extractors are well-suited, since their
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feature vectors can be easily binarized. This study aims to
leverage the effectiveness of the fuzzy commitment scheme
in protecting deep learning-based biometric templates and
demonstrate how multi-instance fusion can be used to in-
crease the performance and security of the fuzzy commitment
scheme. For this purpose, a case study using multiple instances
of fingerprints is conducted using a state-of-the-art deep neural
network for feature extraction.

The remainder of this work is organized as follows: In
section II, the background and related work are presented. In
section III, the methodology is described. In section IV, the
experimental results are presented. Finally, in section V, future
work is discussed, and the conclusion is provided.

II. RELATED WORK
A. The Fuzzy Commitment Scheme

The fuzzy commitment scheme, introduced by Juels and
Wattenberg [8], protects biometric templates while allowing
error-tolerant verification. It binds a fixed-length binary vector
to a cryptographic key, that is encoded using an ECC that
detects and corrects errors within a binary vector. To validate
the correctness of a retrieved key, a hash of the key is
additionally stored. The binding is achieved by applying a
bitwise Exclusive-OR (XOR) operation between the encoded
key and the biometric template where both are required to
be of same length. Since the XOR operation is self-inverse,
applying another bitwise XOR with a biometric probe, exposes
an erroneous version of the encoded key, where the differences
between the original template and the probe correlate with
the errors. The original key can be recovered depending on
the number of errors, their distribution, and the chosen error
correction code. The correctness of a retrieved key is verified
by computing its hash and comparing it to the stored hash of
the original key. Notably, once the correct key is retrieved, the
original template is also revealed.

Early works have applied the scheme to binary iris codes
[9]. To apply the scheme to characteristics, for which the
features are not commonly extracted in the form of binary
vectors, feature type transformations have been used to make
them compatible with the scheme. For instance, this concept
was applied to fingerprints in [10] and voice in [11]. More
recently, deep learning has been used to extract feature vectors
from facial data, which are then binarised and protected using
the fuzzy commitment scheme [12].

It has been demonstrated that a statistical attack can com-
promise the fuzzy commitment scheme in offline attack sce-
narios, especially when the key is distributed across multiple
blocks, exposing the key as well as the original template
[13, 14]. This attack operates by performing multiple non-
mated comparisons, constructing a histogram of the decoded
codewords for each block, and identifying the most frequently
occurring codewords to reconstruct a key. If the average
Hamming distance between two uncorrelated (i.e., non-mated)
template is significantly below 0.5, the correct codeword for
each block can be identified with a relatively small number
of non-mated comparisons, ultimately exposing the correct

key. Moreover, a linkage attack has been demonstrated that is
able to determine if two protected templates correspond to the
same individual, due to the linear property of the used error
correcting codes [15]. It was shown that this attack can be
mitigated by performing a public pseudo-random permutation
that shuffles the individual bits before applying the fuzzy
commitment scheme [10, 16].

Recent studies using deep learning-based feature extraction
have shown that performance levels sufficient for traditional
biometric systems may be inadequate for fuzzy commitment
scheme, as a single false accept can enable the recovery of the
committed binary template. For face recognition, such attacks
enable approximate reconstruction of the facial image [17].
For gait recognition, the effective security against false accepts
was estimated to be comparable to a 4-digit PIN [18].

TABLE I
OVERVIEW OF MOST RELEVANT WORKS ON MULTI-BIOMETRIC FUZZY
COMMITMENT SCHEMES.

Character- FNMR FMR Key size
Ref.  Year  “iiie) ~ Datasets) (n%)  (n% (in bits)
[19] 2009 3D Face FRGC ~ 22% 0.25% 155 bits
[20] 2011  Two irises CASIA-v3 5.56% 0.01% 128 bits
Fingerprint FvC02 DB2,
1] 2012 RECPH CASIA-v1, ~1%  ~0.0% na.
> XM2VTS
y . NIST-ICE, o .
[22] 2013 Face, Iris FRGC 0.89% 0.0% 217 bits

B. Multi-Biometric Fuzzy Commitment Schemes

The above table provides an overview of relevant works on
multi-biometric fuzzy commitment schemes, presenting their
False Non-Match Rate (FNMR), False Match Rate (FMR), and
key sizes. These schemes typically focus on multi-algorithmic,
multi-instance, and multi-modal fusion approaches. Kelkboom
et al. [19] and Rathgeb et al. [20] explore multi-algorithm and
multi-instance fusions at the feature level, where features from
different sources are combined and filtered for reliability. Na-
gar et al. [21] use feature type transformations for fingerprint,
face, and iris embeddings, reporting high performance at a
security level of 53 bits. Kanade et al. [22] combines multi-
instance fusion with multi-modal fusion (face and iris), using
a weighted error correction for the imbalance of feature sizes.

While these methods improve error distribution and recog-
nition performance, the key sizes reported are not accurate
measures of security, as false matches can reveal keys. Addi-
tionally, works reporting an FMR of 0% likely suffer from lim-
ited non-mated comparisons. Furthermore, these approaches
predate the use of deep learning-based feature extractors in
biometric systems.

III. METHODOLOGY

A. Feature Extraction and Binarisation

This work explores the viability of multi-instance fusion
for securing multiple fingerprint templates using the fuzzy
commitment scheme. Deep learning-based feature extractors
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are leveraged to generate fingerprint templates suitable for
protection. An overview of the system is shown in Figure 1.
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Fig. 1. Overview of the fuzzy commitment scheme for multi-finger biomet-
rics. The diagram illustrates both enrollment and retrieval processes, including
feature extraction from multiple fingerprints, concatenation, binarization, and
error-correcting code (ECC) encoding and decoding.
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In the multi-instance scenario, a single deep learning-based
feature extractor can be applied to all fingerprint instances,
eliminating the need for separate extractors for each template.
Deep learning-based feature extractors produce fixed-length
real-valued vectors, typically of size n = 2% (e.g., 256 or
512), due to their training with differentiable loss functions
such as the Euclidean distance and hardware optimization.
For a multi-instance system, m feature vectors are generated
and concatenated into a single multi-biometric feature vector
v=wv]|...||vm = (&1,...,Zpn.m), of size n - m. To protect
these feature vectors with the fuzzy commitment scheme, the
real-valued vectors are binarised into binary strings. Since
these vectors typically have distributions centred around zero,
their features are approximately evenly split between positive
and negative values. This allows binarisation of features ac-
cording to the sign ¢(z) = (1) ifefsfo , mapping positive values
to 1 and negative values to 0, ensuring an equal probability of
ones and zeros. Using this approach, the vector is binarised by
binarising each individual feature, v, = (g(x1), ..., q(Tn.m))-
While binarisation methods that map features to more than one
bit can lead to better performance, as shown in Drozdowski
et al. [23], these methods need to be trained on the respective
feature extraction methods. Another advantage of applying
this simple binarisation method to deep learning-based feature
vectors is that, since each binarised feature is expected to have
an equal probability of being zero or one, two uncorrelated
vectors v and v’ (i.e., non-mated feature vectors) will, on
average, have a Hamming distance of 0.5. This is expected
to mitigate the statistical attack proposed in [14].

B. Enrolment and Verfication

A subject is enrolled within the scheme by collecting a
biometric reference, i.e. fingerprint(s), from the subject and
processing it as described in subsection III-A. A secret key
k is chosen and encoded using an ECC, which results in

¢ = enc(k). The key-size k depends on the choice of the
ECC, as the size of the encoded key needs to be equal to the
template size n - m. Moreover, the hash H (k) is calculated,
stored, and used afterwards to verify the correctness of a
retrieved key. Additionally, the hash is used to seed a public
bijection o that is used to shuffle the features in the feature
vector 0 = o(vp). This step serves a role similar to that of
cryptographic salting, introducing pseudo-randomness into the
stored record. Specifically, it prevents different templates of
the same subject from being directly correlated with each other
[16]. The main operation of the fuzzy commitment scheme is
applying a bitwise XOR between the biometric template and
the encoded key, creating the binding 6 = ¢ @ 0. The pair
(6, H(k)), called the commitment, is stored.

During verification, a biometric probe is collected from the
subject, and the corresponding feature vector v’ is used to
obtain v} using the same binarisation process as in enrolment.
Using H (k), the public bijection o is reconstructed, and the
biometric probe is permuted to obtain ¥, = o(v;). Next, the
bitwise XOR operation is performed between the permuted
biometric probe and the binding, i.e., § & 0. The resulting
vector is then fed into the decoder function of the ECC to
compute a candidate key «' = dec(d @ 0p). Finally, the
correctness of the candidate key is verified by computing its

hash and comparing it to the stored hash, i.e., H(x') ZH (k).
The key can be correctly retrieved if the distance vector 0 B0;,
between the biometric reference and probe satisfies the error-
correction capability of the code, meaning |0y, & ¥j| is within
the allowed threshold, where |-| denoted the Hamming weight.

C. Error Correction Codes

The fuzzy commitment scheme uses ECCs to handle intra-
class variance in biometric data. Small differences between
the biometric template used during key binding and retrieval
are treated as errors that the ECC corrects. Choosing the right
configuration ensures successful retrieval while sustaining a
low probability of false matches. The number of correctable
errors cannot be freely chosen but is implicitly determined by
the used ECC. Additionally, in some cases (e.g., multi-level
codes), the number of correctable errors may not be fixed and
depends on the distribution of errors. Bit-level error correction
is ideal for biometric data in binary form when single-bit
errors are expected. Hadamard codes, commonly used for
small bit-blocks, encode bit strings into larger code words with
minimum pairwise distances, allowing errors to be corrected.
However, if errors exceed this threshold, the correction fails,
i.e. the string may be mapped to an incorrect code word. In
the proposed system, the key « consisting of k bits is encoded
to a string of n - m bits, matching size of the binary feature
vector v. Hadamard codes encode k bits into 28! bits and
can correct up to 2¥=2 — 1 errors. To retrieve longer keys,
the key is divided into b blocks, each encoded separately,
resulting in k£ = b(log2 (%) + 1). This configuration fails
if any block exceeds its error correction limit, % - 1.
The deployed random permutation can mitigate this issue to
some extent, by redistributing errors across the feature vector
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[20]. While this reduces the risk of burst errors, block-level
errors can still occur. To address this, Reed-Solomon codes
are additionally applied. These codes treat blocks as finite-
field elements and correct errors by adding redundancy. Keys
are segmented, encoded with Reed-Solomon codes, and further
encoded with Hadamard codes. During retrieval, minor bit flips
are corrected in a first step, followed by burst error correction
in the second step. This multi-level ECCs enables iterative
decoding to enhance correction capabilities across blocks [24].

D. Experimental Setup

Experiments are conducted using the MCYT-330 fingerprint
database [25], which contains samples from each finger of 330
subjects. In this study, each hand of a subject is considered
as a separate subject, using all fingers except the thumb.
This approach results in 660 subjects, each comprising four
fingers. For feature extraction, an re-implementation of the
DeepPrint method is employed, generating fixed-length real-
valued feature vectors of size 512 [26]. Experiments are per-
formed by combining features from one, two, and four fingers
in the fuzzy commitment scheme, varying the setups of the
ECC. Each experiment includes 3,960 mated comparisons and
2,609,640 non-mated comparisons. Biometric performance is
evaluated using Genuine Match Rate (GMR) and FMR. The
GMR represents the rate at which mated comparisons are
correctly classified as matches, while the FMR represents the
rate at which non-mated comparisons are incorrectly classified
as matches. The False Accept Security (FAS) is used to assess
system security because false accept attacks tend to be the
most effective once statistical and linkage attacks have been
ruled out, and they are generally more potent than brute-
force attacks. In such attacks, an adversary simulates non-
mated authentication attempts to cause a false match, which
ultimately reveals the key and the protected biometric data.
This assumes the attacker has full knowledge of the algorithm,
access to protected templates, and statistical data about the
biometric feature vectors. The FAS represents the expected
number of non-mated comparisons needed to produce a false
match and is expressed in bits as log,(FMR ™) [27].

IV. RESULTS AND DISCUSSION
A. Results

The experimental results are summarized in Table II for
one, two, and four fingers. Since the deployed permutation
can affect the outcome of a comparison trial, the experiments
are repeated ten times and the results are averaged. As
the experimental results were consistent with only negligible
variance, these variations are not further discussed. Notably,
for the one-finger system, the average Hamming distance for
non-mated comparisons was found to be slightly lower than
the expected 0.5, averaging 0.4928. Although this deviation
might theoretically make statistical attacks more promising
than brute-force attacks, we still expect the false accept attack
to be more effective.

Using one finger, the scheme reaches a FAS of 12.06
bits at a GMR of 95.91%, with a key-size of 72 bits. In

a naive configuration where there is only a single block,
the system achieves a GMR of 99.39 and a FAS of 6.78
bits. The system using two fingers reaches a FAS of 16.38
and a GMR of 97.45% at a key-size of 112. Notably, the
naive configuration improves the FAS to 9.06 bits while also
improving the GMR slightly to 99.87%. The system based
on four fingers reaches a FAS of 17.7 bits with a near-
perfect GMR of 99.35% at a key-size of 112 bits. While
this marks only a slight improvement of approximately 1 bit
in terms of security, the improved GMR suggests that false
non matches are four times less likely, meaning that while the
four finger system is only slightly more secure than the two-
finger system, the convenience is increased, since capturing
four fingers or two fingers makes practically no difference in
terms of convenience, but the frequency of false no matches
and therefore of required recaptures is significantly reduced.
For this setup, the naive configuration reaches a FAS of 12.37
bits at a perfect GMR of 100%.

Notably, there is a strong correlation between the key-size
and the FAS. This can be attributed to the fact that in an ECC,
a larger message length (key-size) is generally associated with
a lower codeword distance and therefore with a lower number
of correctable errors. This means that for larger key-sizes, the
similarity of a comparison needs to be higher to produce a
match. However, while the same principle is true for the GMR,
meaning that the GMR should be lowered for higher k, there
are more deviations. For example, for one finger with a key
size of 56 bits, the GMR is only 94.77%, whereas at a key
size of 60 bits, the GMR is 97.30%. While smaller key sizes
generally allow for a higher maximum number of correctable
errors, the use of block-level error correction increases the
minimum number of correctable errors. This demonstrates the
effectiveness of two-step ECC in improving performance but
also highlights how variability in error correction capability
can negatively impact system performance.

B. Discussion

The findings confirm that the multi-instance fusion ef-
fectively increases both system performance and security.
Notably, the four-finger setting demonstrates improvements
in both GMR and FAS compared to single- and two-finger
configurations. Compared to the works presented in Table I,
the four-finger setup provides similar performance levels,
while also offering a non-zero value for FMR, which surpasses
the performance of other works reporting non-zero FMRs.
Regarding key-size, our work falls at the lower end, with
a maximum key size of 128 bits. However, since fuzzy
commitment schemes are likely to yield a lower FAS, this
becomes less significant.

In contrast to more complex approaches such as homo-
morphic encryption, the fuzzy commitment scheme offers
practical advantages in terms of runtime. The underlying error-
correcting codes are computationally lightweight, relying on
simple algebraic operations, which allows efficient implemen-
tation even in constrained environments.
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TABLE II
RESULTS FOR 1-, 2-, AND 4-FINGER SETUPS. THE 4-FINGER CONFIGURATION ACHIEVES THE BEST TRADEOFF BETWEEN GMR AND FAS.

One Finger Two Fingers Four Fingers
kb GMR% FMR% FAS kb GMR% FMR% FAS k b GMR% FMR% FAS
10 1 99.39 0.9124 6.78 11 1 99.87 0.1877 9.06 12 1 100.00 0.0189 12.37
18 2 98.61 0.4031 7.95 20 2 99.83 0.1162 9.75 22 2 99.98 0.0107 13.19
32 4 97.85 0.1675 9.22 36 4 99.69 0.0506 10.95 40 4 99.90 0.0044 14.49
16 4 98.89 0.5449 7.52 18 4 99.85 0.1307 9.58 20 4 99.99 0.0131 12.90
56 8 94.77 0.0349 11.48 64 8 99.30 0.0116 13.08 72 8 99.76 0.0012 16.33
42 8 97.90 0.1261 9.63 48 8 99.66 0.0354 11.47 54 8 99.84 0.0031 14.98
28 8 98.61 0.3016 8.37 32 8 99.79 0.0744 10.39 36 8 99.94 0.0067 13.86
96 16 83.08 0.0021 15.51 112 16 97.45 0.0012 16.38 128 16 99.35 0.0005 17.70
84 16 92.95 0.0093 13.40 98 16 98.92 0.0034 14.84 112 16 99.67 0.0006 17.40
72 16 9591 0.0235 12.06 84 16 99.27 0.0081 13.60 96 16 99.73 0.0009 16.75
60 16 97.30 0.0564 10.79 70 16 99.49 0.0167 12.55 80 16 99.80 0.0016 15.91
48 16 98.13 0.1119 9.80 56 16 99.65 0.0311 11.65 64 16 99.86 0.0029 15.09
V. CONCLUSION [7]1 C. Rathgeb, B. Tams, J. Merkle, V. Nesterowicz, U. Korte, and M. Neu, “Multi-

This study explores the application of the fuzzy commitment
scheme in a multi-instance biometric system, utilizing deep
learning-based feature extractors for fingerprint templates. The
work presents a system designed to meet the requirements
of Biometric Template Protection. Irreversibility is ensured
by the binding process of the fuzzy commitment scheme
and statistical attacks are mitigated through the use of deep
learning-based feature extractors. Unlinkability is achieved
by applying (pseudo)random permutations, and renewability
is implicitly fulfilled by satisfying both irreversibility and
unlinkability. While an in-depth evaluation of performance
preservation was not conducted, our results indicate that the
system maintains competitive recognition accuracy. Notably,
the four-finger configuration achieved a near-perfect GMR
of 99.35% and a FAS of 17.7 bits with 128-bit key bound.
However, as discussed, the effectiveness of multilevel ECC
depends on the error distribution, meaning the number of
correctable errors is not constant. This variability can impact
both performance and security. Therefore, future work should
explore the integration of additional fusion techniques, such as
interleaving, alongside the deployed permutation, to optimize
error distributions and stabilize the error-correcting capabilities
of the code. Another direction for future work could be to
systematically evaluate whether deep learning-based feature
extractors can effectively mitigate statistical attacks.
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