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Abstract—Biometric recognition systems can automatically
recognize individuals using their physical or behavioral charac-
teristics, and they are thus adopted in many applications requir-
ing strong authentication mechanisms. The iris plays a pivotal
role among the traits employed for biometric purposes, mainly
thanks to the high recognition performance achievable with this
modality. While techniques further improving current recognition
capabilities are being developed, ensuring the security of these
systems against attacks is becoming an increasingly pressing need.
This paper deals with presentation attack detection (PAD) for
iris recognition, analyzing the effects of image compression on
the effectiveness of data-driven approaches. The conducted tests
rely on attention-based frameworks, namely vision transformers,
to perform PAD while providing suitable tools to argue on the
decisions’ explainability. The obtained results demonstrate the
effectiveness of the employed transformer-based PAD, and the
influence of compression on the achievable error rates.

Index Terms—Biometrics, iris, presentation attack detection,
compression, attention, explainability.

I. INTRODUCTION

Biometrics represents a reliable and efficient means for
automatic people recognition. Creating personal identifiers by
exploiting information about what we are, i.e., our physical
or behavioral traits like a fingerprint, face, or voice, biometric
systems provide greater security and convenience than tradi-
tional solutions based on what we know, such as passwords
and PINs, or what we own, like tokens [1] [2].

Although numerous advantages are encouraging their adop-
tion, biometric systems are still vulnerable to several potential
threats. More in detail, any module characterizing a biometric
system, namely the acquisition sensor, the feature extractor, the
database, the matcher, and the decision maker, as well as the
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channels interconnecting them, could be the target of different
attacks aiming to corrupt the system integrity [3]. Among
the threats mentioned above, sensor attacks, also known as
presentation or spoofing attacks, consist of presenting fake
biometric traits as system inputs. Since they can be performed
without knowing about the inner system mechanisms, they
have a particular relevance given that the target biometric data
could be acquired in real-life scenarios and then replicated into
realistic fake samples. Fine details of faces, fingerprints, and
also irises can be in fact easily collected from unaware subjects
in a non-authorized way by leveraging on high-resolution
cameras [4]. To thwart such risk, presentation attack detection
(PAD) mechanisms, also indicated as liveness detection strate-
gies, must be implemented to distinguish genuine biometric
samples from spoofed replicas. These solutions are nowadays
as important as algorithms improving current recognition
performance, and this work is dedicated to analyzing the
effectiveness and robustness of PAD methods.

Specifically, the trait considered here is the iris, universally
recognized as the modality that ensures the best recognition
capabilities in practical biometric systems. While traditionally
employed at border crossings or high-security access control
checkpoints, recent technological advances have made this
characteristic usable in several commercial applications: iris
recognition can be implemented in smartphones as an alterna-
tive to face and fingerprint, integrated in virtual reality headsets
to guarantee connections of the actual user with the digital twin
[5], [6] and also employed as a digital key in cryptocurrency
identity management systems.

Our analysis of iris PAD is twofold: We first investigate
the effectiveness of attention-based classifiers at discriminating
between genuine and fake iris samples by exploiting vision
transformers (ViTs) for the first time. We also evaluate the
influence of a commonly employed image processing step,
i.e., compression, on the performance achievable through the
considered approaches.
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II. IRIS PRESENTATION ATTACK DETECTION

As iris recognition became increasingly relevant, thanks to
its high accuracy, stability, and resistance to environmental
influences, it became a much more worthy target for attacks,
including those at the sensor. Presentation attacks against iris
recognition systems can take multiple forms [7], including
the use of printed iris images [8], textured contact lenses
[9], high-resolution digital displays [10], prosthetic eyes [11],
and also early-stage post-mortem samples [12]. Among such
possibilities, attacks relying on textured contact lenses are
considered the most relevant ones, since they can be performed
with limited resources and allow attackers to interact naturally
with the acquisition sensors [9].

Iris PAD has been traditionally handled by designing hand-
crafted features to distinguish bonafide samples from impostor
attacks [13]. At the same time, the most up-to-date approaches
rely on deep learning strategies [14] to achieve better per-
formance, as shown in recent competitions [15]. Despite the
significant recent progress [16], some issues and challenges
remain. For instance, the influence of several factors on iris
PAD has been evaluated, considering the role of image seg-
mentation [17], demographic aspects of the involved subjects
[18], and their gender too [19]. The present work aligns in
this direction, investigating how image compression can alter
the performance of data-driven iris PAD approaches.

A. Proposed approach for Iris PAD

While undoubtedly effective in handling several tasks, data-
driven models still have downsides affecting their reliability,
the most important of which lies in their black-box nature,
which often makes their behavior opaque and their decisions
hard to interpret. Thus, there has recently been a growing
demand for solutions that may guarantee a certain level of
explainability in the carried-out tasks to foster users’ confi-
dence in these methods’ fairness and unbiasedness [20].

In this direction, attention mechanisms are rapidly gaining
interest as tools that may provide insights on the aspects
driving the performed decisions. Besides that, they can often
significantly improve the performance of models that don’t use
them [21] and are thus applied to an increasing number of ap-
plications. Iris PAD is no exception to this trend, with networks
equipped with attention mechanisms adopted in [22] where
an attention-guided convolutional neural network (CNN) is
used to provide visual explanations of model predictions, in
[23] where an attention-based pixel-wise method is used to
capture fine-grained cues, and in [24] where the last block
produced by a CNN is passed to an attention module before
taking decisions. In all these cases, attention mechanisms are
used with CNN architectures. In contrast, we here evaluate
the effectiveness of relying directly and solely on attention
mechanisms, as for the transformer paradigm [25].

More in detail, we resort to ViT architectures [26] for iris
PAD. Such an approach dissects images into fixed-size and
non-overlapping patches, with size 16×16 in the considered
design, subsequently flattened and linearly embedded into vec-
torial representations through learnable embedding matrices. A

multi-head architecture is then commonly implemented using a
series of layers, each consisting of a self-attention contribution
[25] followed by a feed-forward network, for each considered
head (12 in our case). Using self-attention mechanisms often
allows one to outperform traditional CNNs in various vision
tasks, especially when dealing with large-scale data [27].

Regarding explainability, processing a new sample with a
trained ViT implies computing a series of attention maps
at each layer, indicating which areas of the original image
are primarily relevant for the desired task. The last layer of
each head typically contains higher-level features that directly
influence the final decision. The maps computed by different
heads can be combined into one by averaging all contributions,
thus providing an output robust to the model fluctuations that
can be used to demystify the ViT behavior.

III. IMAGE COMPRESSION

Image compression is a common processing step adopted
in basically every application to reduce system requirements
in terms of storage space and transmission bandwidth. While
lossless compression may be effective in some scenarios, the
lossy approach is the most used since notable advantages may
often be achieved with limited perceivable quality reduction.
Due to its ubiquitous usage, the effects of compression on the
recognition performance of biometric systems have been inves-
tigated in several papers [28], focusing mainly on widespread
traits such as fingerprint [29], face [30], or iris [31]. Such
studies are motivated by the fact that, in practical systems, it
is crucial to analyze which compression levels could be em-
ployed when storing/transmitting biometric samples without
significantly affecting the achievable recognition performance.

Regarding iris biometrics, the impact of compression on
recognition performance has been investigated in several pa-
pers [32]–[34] for lossy and lossless codecs, by comparing
templates generated from original and decompressed images.
Recently, also deep-learning-based compression schemes have
been considered, with performance evaluated in terms of rate-
distortion and recognition accuracy [35].

In this paper, we investigate the effects of JPEG and
JPEG2000 compression on iris PAD for the first time. As
it will be detailed in the following sections, we relate rate-
distortion performance measured in terms of the percent root
square difference (PRD) to the recognition accuracy of the
considered iris-based recognition systems.

IV. EXPERIMENTAL TESTS

Experimental tests were conducted on the “Notre Dame
Contact Lenses Dataset 2015” [36], containing iris images
collected from subjects wearing no lenses, soft (transparent)
lenses, and textured (cosmetic) lenses. A number of 7200
images were used in the tests, with an equal number of samples
(2400) for each of the three classes. A preprocessing step
comprising contrast limited adaptive histogram equalization
(CLAHE) enhancement [37] and iris segmentation was applied
to all the images considered in the performed tests. CLAHE
increases the contrast in the iris regions and makes the edges
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(a) (b)

Fig. 1: Confusion matrices for the 3-class tests. (a): ViT-16;
(b): Resnet-34 + CBAM.

Fig. 2: Attention maps for original images: textured lenses in
the first two columns on the left, no lenses in the two middle
ones, soft lenses in the last two on the right.

more visible. Segmentation based on the Hough transform was
employed to identify the iris region, given its potential positive
effect on PAD [17]. The selected areas were incremented by
10%

A. ViT effectiveness for PAD

The used ViT-16 architecture was pre-trained on the
ImageNet-1K dataset. For regularization purposes, its last
linear layer was replaced by a combination of two linear layers
interspersed with a dropout layer. Training was performed
using cross-entropy as a loss function and stochastic gradient
descent (SGD) as an optimizer, with batches of 128 samples.

Iris PAD performance was evaluated by computing the
attack presentation classification error rate (APCER) and the
bonafide presentation classification error rate (BPCER) [7]. To
present generalizable results, instead of performing a single
training/testing evaluation as in most studies [23], [24], a
cross-validation approach was followed by carrying out five
evaluations, each time taking 70% of the images in each class
for training, 10% for validation, and 20% for testing. More-
over, training was conducted considering a 3-class scenario to
distinguish each available class, and a binary training scenario
where the “no lens” and “soft lens” classes are joined to
represent bonafide images, whereas the “texture lens” class
provides presentation attacks. The proposed ViT-16 network
achieved an APCER = 0.1% and a BPCER = 0% in both
the 3-class and binary training scenarios, with the confusion
matrix associated with 3-class tests in Figure 1(a). In the
challenging 3-class scenario, some images with soft lenses are
misclassified as if no lens is present. Yet, all bonafide images
are correctly interpreted, with only a few errors committed for
textured iris in the whole cross-validation. For comparative
purposes, analogous tests were conducted with a ResNet-34
network equipped with a convolutional block attention module

(a) (b)

Fig. 3: PAD performance for varying compression levels. (a):
JPEG; (b): JPEG2000.

Fig. 4: Attention maps for increasing JPEG compression on
textured iris images, with decreasing quality from left to right.

(CBAM) [24]. In this case, there is a notable difference in
training with 2 or 3 classes, with the binary case resulting in
an APCER = 4.4% and a BPCER = 2.9%, while the 3-class
scenario in a much more significant variability across different
iterations and an overall APCER = 11.7% and BPCER =
6.5%, with the corresponding confusion matrix in Figure 1(b).
Besides providing consistently better results for PAD, the
proposed ViT-16 thus also provides further details regarding
the processed images, detecting also soft lenses.

The attention maps computed for samples from each of the
3 iris classes are given in Figure 2. The regions of interest
change for each kind of input, with attention mostly put on
the iris borders for images with soft lenses, on spots within the
iris when no lens is present, and on distributed regions within
the iris when textured lenses are worn. The obtained maps are
fairly different from those obtained with general methods such
as GradCAM since they are specific and inherently computed
by the considered ViT, and directly drive the decisions when
processing their inputs.

B. Effects of Compression

We evaluated the effects of lossy compression on recogni-
tion using the JPEG [38] and JPEG2000 [39] codecs provided
by the ImageMagick library (v7.1.1-43). In particular, the
JPEG quality factors (q) investigated were 5%, 10%, 15%,
25%, 50%, and 75%. For JPEG2000, we considered six differ-
ent compression ratios (rt) between 10 and 120. The effects
of compression on the achievable APCER and BPCER are
shown in Figure 3. It can be seen that increasing compression
mainly influences the capability to correctly recognize attack
samples, with the APCER less affected, especially for the
proposed ViT approach. The effects of JPEG compression on
ViT attention maps are shown in Figure 4, where decreasing
quality is applied to the original textured iris image at the far
left of Figure 2, eventually leading to misclassification when
the produced ViT maps become similar to those obtained for
genuine samples.
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Fig. 5: Average compression efficiency (CE) and percentage
root mean square difference (PRD) of JPEG and JPEG2000
for different values of the respective compression parameters.

A more detailed analysis is conducted by evaluating, for
all compressed images, the Percentage Root-mean-square
Difference (PRD), i.e., the distortion between original and
compressed images in percentage [40], and the Compression
Efficiency (CE) defined as CE =

(
1− Bc

Bo

)
× 100, being Bo

and Bc respectively the sizes (in bytes) of the original and
compressed images. The average CE and corresponding aver-
age PRD, evaluated on the whole image dataset for different
values of q and rt, are shown in Fig. 5. Furthermore, the
False Rejection Rate (FRR) and False Acceptance Rate (FAR)
are used to compare recognition performance on compressed
datasets against the original dataset. Specifically, FRR(x)
represents the percentage of genuine samples with PRD < x
that are incorrectly rejected, while FAR(x) represents the
percentage of fake samples, i.e., images with textured lenses,
with PRD > x that are incorrectly taken for genuine samples.
Note that FRR measures how well the system can identify
legitimate users for a given maximum amount of distortion.

In Fig. 6, we report FRR and FAR curves evaluated for both
JPEG and JPEG2000 lossy compression algorithms consid-
ering both ViT-16 and ResNet-34 classifiers for recognition.
It is worth noting that results reported in Fig. 6 are based
on tests carried out on 43,200 compressed images. As shown
in Fig. 6.(a), in the case of JPEG compression and ViT-16
model, the FRR remains zero up to PRD = 7%. Instead, in
the case of JPEG compression and the ResNet-34 model (see
Fig. 6.(b)), the FRR is greater than zero even for minimal
values of PRD, i.e., PRD > 0.01%. These results further
confirm the superiority of the ViT-16 system. Moreover, by
comparing Fig. 6.(c) and Fig. 6.(a), it can be observed that a
more significant distortion can be tolerated in the case of JPEG
image compression compared to JPEG2000 compression. Fi-
nally, observing the set of FAR curves shows that impostors
are correctly recognized if the PRD is maintained below 2%.

A more detailed analysis was conducted by further ana-
lyzing compression results, considering distinct image subsets
corresponding to the different values of the compression
parameters. In particular, we evaluated how compression pa-
rameters impact transparent (soft) lenses and textured (hard)
lenses by analyzing the confusion matrices.

For space’s sake, we consider only the case of JPEG

(a) FAR and FRR achieved with
JPEG and ViT-16

(b) FAR and FRR achieved with
JPEG and ResNet-34

(c) FAR and FRR achieved with
JPEG2000 and ViT-16

(d) FAR and FRR achieved with
JPEG2000 and ResNet-34

Fig. 6: FRR and FAR achieved with different models and
compression algorithms.

Fig. 7: Confusion matrices achieved with JPEG and ViT-16
model for decreasing values of q.

compression and ViT-16 model. In Fig. 7 we show a few gray
images representing confusion matrices achieved for different
compression parameter values q. Note that the gray level
reflects the number of images. In particular, white corresponds
to the value 2400, i.e., the available number of images for
each class. As shown in Fig. 7, images with no lenses (see
the middle row in the confusion matrices) are marginally
affected by the compression (in fact, the color of middle cells
of all confusion matrices is white or very light gray for all
values of q, so almost all “no lens” are correctly recognized
as such). Textured lenses (see the top row in the confusion
matrices) start to be misclassified as soft or “no lens” when
q ≤ 25%. Instead, soft lenses (see bottom row in the confusion
matrices) are misclassified even in the case of q = 75%.
Nevertheless, soft lenses are consistently misclassified as “no
lens” and therefore correctly recognized as genuine samples,
i.e., misclassifications of soft lenses as “no lens” has no impact
on the recognition accuracy. Confusion matrices achieved with
the JPEG2000 and ViT-16 model have similar trends, showing
that textured lenses start to be misclassified as soft or “no lens”
when rt ≥ 30%.
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V. CONCLUSION

Iris PAD has been analyzed in this paper by evaluating the
effectiveness of data-driven models relying on ViT architec-
tures to distinguish bonafide samples from impostor attacks
and investigating the effects of compression on the achievable
recognition performance. The proposed approach has proven
to be particularly effective for the desired task, providing the
capability of recognizing also the presence of soft lenses in
an iris image. The used ViTs give the tools to argue about the
explainability of the decisions taken by analyzing the attention
maps computed during processing the received inputs. The ap-
plication of JPEG and JPEG2000 compressions has shown that
the quality of the processed images cannot be decreased below
certain levels to avoid incorrect interpretations, especially for
fake samples.
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