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Abstract—Recent advances in machine and deep learning
played a crucial role in developing Fingerprint Presentation
Attack Detection (FPAD) modules, aiming at mitigating attacks
leveraging artificial fingerprint replicas against Automated Fin-
gerprint Identification Systems (AFISs). However, these advances
also introduce a new threat: adversarial attacks designed to mis-
lead the detectors. The risk posed by these attacks is supported by
the recent findings on the feasibility of transferring adversarial
fingerprint attacks from the digital domain to the physical one.
To contribute to the development of countermeasures against this
threat, the goal of this work is to investigate the risk posed by
state-of-the-art adversarial attacks and strategic combinations
between them. Accordingly, we provide an extensive analysis of
the impact of white-box and black-box attacks on benchmark
FPAD modules in fingerprint recognition scenarios, discussing
the most relevant findings for addressing the vulnerability of
these detectors to realistic and feasible adversarial attacks.

Index Terms—fingerprint recognition, adversarial perturba-
tion, presentation attack, biometric systems.

I. INTRODUCTION

In recent years, we have seen a widespread diffusion of
Automated Fingerprint Identification Systems (AFISs) in pub-
lic security and personal devices, thanks to their reliability
and user-friendliness. However, these biometric systems are
vulnerable to spoofing attacks, namely, presentation attacks
perpetrated by submitting artificial fingerprint replicas to the
contact-based or contactless sensor to impersonate an au-
thorized user [1], [2]. Fingerprint Liveness Detection (FLD)
systems, also known as Fingerprint Presentation Attack De-
tection (FPAD) systems, have been developed to counteract
these attacks. Typically relying on machine learning and deep
learning approaches, these systems have been demonstrated to
be accurate in discriminating between genuine and spoofed
fingerprints [3].

However, these approaches increase the vulnerability to
adversarial attacks, aiming at modifying the classification
outcome by digitally perturbing the input image. These attacks,
which can be perpetrated at either training or test times
(poisoning and evasion, respectively), are especially danger-
ous due to their capability to modify a classifier’s decision
while keeping the perturbed image visually unchanged [4].
This vulnerability became even more critical in fingerprint
recognition considering the recent findings about the possi-
bility of transferring the deceiving alterations in the physical
domain, therefore allowing the creation of Presentation Attack

(a) Spoofed fingerprint (b) Perturbed spoofed fingerprint

Fig. 1. Example of spoofed fingerprint (a), classified as fake, and its perturbed
version after applying the proposed adversarial attack strategy (b), classified
as Live. Specifically, the latter shows the outcome after applying first APGD
[15], then DeepFool [16] in the sequential combination (i.e., ADVA,D)

Instruments (PAIs) for attacking AFISs [5]. Hence, this threat
may undermine the reliability and, consequently, the trust-
worthiness of the use of fingerprints for identity recognition,
especially considering the robustness required by real-world
high-security and forensic applications [6]–[8].

So far, the research community has mainly focused on
generating perturbed fake fingerprints that are recognized as
bona fide by target FPADs [9]. However, tailoring the adver-
sarial attacks to the deception of the only liveness detection
could negatively impact the identity-matching capability of
the resulting spoofs due to the introduced large distortions
[10]. Therefore, more effort should be dedicated to minimiz-
ing adversarial distortions so that perturbed fingerprints can
successfully deceive FPADs while maintaining their ability to
mislead AFISs.

To reach this goal, the strategic combination of adversarial
attacks could allow limiting the perturbation introduced by the
individual contributing attacks while still preserving the overall
deceiving capability (e.g., Figure 1). This approach, already
explored concerning adversarial attacks in other application
fields, could represent a feasible trade-off on the effectiveness
of misleading both AFISs and FPADs (e.g., [11], [12]).

In this paper, we investigated the effectiveness of single
and combined adversarial attacks in a fingerprint recognition
scenario. The goal is to evaluate the impact of controlled per-
turbations that preserve their ability to mislead the AFIS when-
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ever they are integrated into traditional presentation attacks
through spoofed fingerprints. Specifically, our contributions
are the following: (i) a strategy for sequentially combining
adversarial attacks in order to improve the effectiveness in
deceiving FPADs while preserving the capability of misleading
AFISs; (ii) extensive analysis of the impact of two state-of-
the-art adversarial attacks and their sequential combinations on
benchmark FPAD modules, simulating scenarios with various
prior knowledge about the attacked system; (iii) the assessment
of the effect of adversarial perturbations on the matching
capability of a baseline AFIS; (iv) insights and guidelines to
aid the development of countermeasures to novel adversarial
attacks.

The rest of the paper is organized as follows. Section II
discusses the state of the art of adversarial attacks with the
main focus on fingerprint recognition. Section III describes
the proposed attack strategy and the preliminary analysis
conducted to set the parameters for the individual attacks
and their combinations. Section IV presents the experimental
framework and Section V discusses the obtained results. The
most relevant insights based on results are reported in Section
VI. Finally, conclusions are drawn in Section VII.

II. RELATED WORKS

Adversarial attacks use subtle input perturbations to exploit
model vulnerabilities and cause misclassification. Even imper-
ceptible changes can mislead systems, for instance, causing
fingerprint misidentification in biometrics. In this section, we
provide a brief introduction to adversarial attacks (Section
II-A) and the particular case of their application to fingerprint
biometrics (Section II-B).

A. Adversarial Attacks to Image Classification Systems

Adversarial attacks are commonly divided into white box
and black box, based on the knowledge of the target model.

White-box attacks rely on full knowledge of the machine
learning model, including its architecture, weights, and gra-
dients, enabling the creation of targeted perturbations. Key
methods include Fast Gradient Sign Method (FGSM) [13],
which alters inputs along the loss gradient; Projected Gradient
Descent (PGD) [14], which iteratively refines FGSM-like
perturbations; Auto Projected Gradient Descent (APGD) [15],
which adapts step sizes for efficiency; DeepFool [16], which
minimizes perturbation to cross the classifier’s decision bound-
ary; and Carlini & Wagner (C&W) [17], which conceptualizes
the attack as an optimization problem to find the smallest
perturbation that induces misclassification while maximizing
confidence in the incorrect class through the use of a loss
function and a confidence parameter.

Black-box attacks lack model access and rely on input-
output behavior. A common approach is the transfer attack
[18], which employs adversarial examples generated on a
white-box model (or surrogate) to fool a black-box target
model. Query-based methods [19] involve the attacker repeat-
edly querying the target classifier with slightly modified in-
puts, observing the responses to refine perturbations. Another

notable technique is the one-pixel attack [21], which aims to
fool the classifier by modifying a few key pixels.

B. Adversarial Fingerprint Attacks

Growing security concerns around adversarial attacks led
the research community to investigate their potential applica-
tion in fingerprint recognition.

In the digital domain, adversarial attacks can fool biometric
recognition based on convolutional neural networks (CNNs),
as demonstrated by attacks on AFIS systems with FGSM,
Deep-Fool, and One-Pixel Attack.

These attacks can also be exploited in the physical domain
to bypass FPADs. For instance, to our knowledge, Marrone et
al. [5] conducted the first adversarial attack on a CNN-based
PAD with DeepFool. In particular, they revealed the feasibility
of physical adversarial fingerprint presentation attacks (ADV-
PAs) by applying liquid latex on perturbed fingerprints, show-
ing that the introduced adversarial perturbations incorporated
in the spoofs are maintained during the cast printing process
[10]. Specifically, their approach uses a multi-stage ADV-
PA with Focus Attention (FA), which applies binarization
before and after each attack iteration to enhance perturbation
effectiveness.

Variants include Uniform Focus Attention (UFA), distribut-
ing perturbations across different fingerprint regions at dif-
ferent iterations, and Robust Focus Attention (RFA), which
adds a dilation step to increase robustness and coverage around
distinctive fingerprint features.

III. ATTACK COMBINATION STRATEGY

As previously introduced, the combination of adversarial
attacks can be leveraged to strengthen the degradation of
classification accuracy. Therefore, one of our goals is to
investigate the potentialities of the sequential combination of
attacks against liveness detection in fingerprint recognition
scenarios.

Similarly to Casula et al. [10], we considered APGD and
DeepFool as adversarial attacks, already introduced in Section
II. In particular, we evaluated the impact of attack parameters
on the spoofed fingerprints, analyzing the suitable trade-
offs between the introduced perturbation and the ability of
misleading FPADs.

In the rest of this section, we introduce the FPAD used as the
target for white-box attacks (Section III-A) and the approach
employed to identify the optimal parameters for individual
adversarial attacks (Section III-B).

A. FPAD

To perform the white-box analysis and, therefore, set the
parameters of the individual attacks, we employed SimpleCNN
[23], a compact CNN including two convolutional blocks
and two fully connected layers. Specifically, it is optimized
through Adam and early stopping based on binary cross-
entropy. The architecture is represented in Figure 2. The
images were converted to grayscale and cropped according
to the dimensions required by the classifier. Importantly, the
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Fig. 2. SimpleCNN architecture [23].

network was trained on the LivDet 2019 dataset to ensure
consistency with the test set and maintain coherence with the
detectors used during the black-box evaluation phase.

B. Parameter Settings

Regarding both individual adversarial attacks, the effec-
tiveness of the introduced perturbation is influenced by two
parameters:

• The maximum perturbation allowed for the attack (ϵ),
indicating the level of distortion applied to the image. In
this case, the study aimed to balance the trade-off between
the effectiveness of the attack and the preservation of
the distinctive features required for fingerprint matching.
Specifically, we analyzed the values from 0.1 to 0.5,
where higher values correspond to greater perturbations.

• The Number of Iterations (max iter), defining the number
of steps the attack algorithm takes to optimize the per-
turbation, with a higher number leading to a significant
increase in the success rate of the attack. Based on the
impact of the perturbations introduced by the two ad-
versarial techniques [10], we analyzed max iter ranging
from 1 to 3 for APGD and from 30 to 50 for DeepFool.

Starting from the maximum values of the two parameters,
all correctly recognized fakes were perturbed using the UFA
technique, previously presented in Section II, and with both at-
tack algorithms. In particular, we employed the UFA technique
because the digital fingerprint is well-suited for the printing
phase and optimized for a subsequent attack in the physical
domain.

We tested multiple combinations of parameters through
the Coordinate Descent algorithm to determine the maximum
parameters for which individual white-box attacks are still
ineffective. Specifically, the maximum values for which spoofs
are correctly recognized as attacks are the following:

• APGD: ϵ = 0.1, max iter = 1
• DeepFool: ϵ = 0.3, max iter = 30
These parameters have been employed by both individual

attacks and their combined counterparts. It is important to
note that the approach followed for the choice of parameters
has been chosen to highlight the potential of the sequential
combination. Therefore, the choice of parameters must be
modified according to the objective and the requirements of
the specific application scenario.

IV. EXPERIMENTAL FRAMEWORK

Coherently with the aim of this study, we assess the vulner-
ability of benchmark fingerprint liveness detection systems to

a novel attack strategy, sequentially combining two different
state-of-the-art adversarial attack techniques while limiting the
perturbation on spoofed fingerprints. The rest of this section
reports the analyzed data, AFIS, and FPADs.

A. Dataset

We performed the analysis on the LivDet 2019 competition
dataset [22]. It comprises fingerprint images of both lives
and fakes acquired at 500 dpi from three sensors: GreenBit
DactyScan84C, Orcanthus Certis2 Image, and Digital Persona
U.are.U 5160. The acquisitions were performed on six fingers
per user, i.e., three per hand (thumb, index, and middle). No-
tably, the spoof test set uses materials different from those used
in the training set to simulate “never-seen-before” conditions.
The choice of this dataset is also motivated by the availability
of pre-tested black-box algorithms, which allowed for a robust
evaluation of the proposed adversarial attack. Specifically, we
considered data from the first sensor to assess the effectiveness
of individual and combined adversarial perturbations.

B. Liveness Detectors

We analyzed the effectiveness of adversarial attacks on
different detectors, based on the category of attack, namely
white box and black box.

Considering the first type of attack, we employed Sim-
pleCNN, previously introduced in Section III.

To assess the effectiveness of the adversarial attack strategy
in a black-box scenario, we considered the liveness detectors
that perform the best on images acquired using the Dac-
tyScan84C scanner presented in the LivDet 2019 competition
[22]. Specifically, we selected JLW and ZJUT as detectors
based on the deep learning approach and PADUnkFv as the
detector based on hand-crafted features.

C. AFIS

We evaluated the effect of adversarial attacks on matching
using the bozorth3 matcher from the NIST suite1. In particular,
we verified whether the introduced perturbations compromised
the verification performance concerning the ability of the
system to match the resulting image with the corresponding
genuine fingerprints.

D. Performance Evaluation

We evaluated the impact of both individual and combined
adversarial attacks. To provide a detailed investigation, we an-
alyzed the sequential combination between attacks considering
all possible application orders, i.e., first APGD then DeepFool
(ADVA,D) and vice versa (ADVD,A).

We assessed the effect of adversarial perturbations on
liveness detection performance by analyzing the impact on
liveness scores, namely, the probability estimated by the FPAD
that the samples are bona fide and, therefore, not spoofs. From
these scores, we also computed and discussed the Attack Pre-
sentation Classification Error Rate (APCER), which measures

1https://www.nist.gov/services-resources/software/
nist-biometric-image-software-nbis
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TABLE I
AVERAGE LIVENESS SCORES ± STANDARD DEVIATION [%] OBTAINED

FROM FPADS (THE HIGHEST LIVENESS SCORES FOR EACH FPAD ARE IN
BOLD).

Attack FPAD
SimpleCNN JLW PADUnkFv ZJUT

Original 4.09±9.32 1.52±5.87 29.25±7.70 1.48±5.73
APGD 0.29±2.91 98.34±9.46 49.25±10.84 98.29±9.46

DeepFool 1.18±6.21 99.43±5.32 48.54±10.76 99.43±5.31
ADVD,A 26.14±32.35 99.68±3.82 49.52±10.81 99.68±3.81
ADVA,D 51.28±36.86 100.0±0.0 49.73±10.72 100.0±0.0

Fig. 3. APCER [%] obtained using 50% as the threshold on liveness scores.

the percentage of fake fingerprints incorrectly classified as
bona fide by the liveness detection system. Specifically, we
obtained the APCER employing a threshold on liveness scores
of 50% (i.e., all the samples related to a score below 50% are
considered attacks, the others as bona fide).

Similarly, we examined the effect of adversarial attacks on
matching scores generated by AFIS to reveal their influence
on fingerprint recognition capability. Specifically, for each
finger of any identity, we compared the images related to the
perturbed fingerprint with the corresponding genuine images
representing the bona fide version of the same fingerprint.

V. RESULTS

A. Liveness Detection

Both individual adversarial attacks demonstrated significant
effectiveness in fooling the FPADs, as shown in Table I. The
only contrasting result is that of APGD in the white-box attack
on SimpleCNN, which reduces liveness scores compared to
the unperturbed spoofs (i.e., averages of 0.29% and 4.09%,
respectively).

The results also reveal that combining the single attacks
can further reduce the overall reliability of FPADs. This
outcome is even more relevant when one observes that no
single adversarial attack is always the most impactful against
all the investigated detectors, suggesting a complementarity
between the adversarial perturbations introduced by the two
attacks. Specifically, APGD is the most effective attack on
PADUnkFv, while DeepFool is the most impactful on the
other detectors. This result is not confirmed by the analysis
on APCER, which highlighted the opposite trend regarding
the most effective attack for specific detectors (Figure 3).

TABLE II
AVERAGE MATCHING SCORES ± STANDARD DEVIATION [%].

Original APGD DeepFool ADVD,A ADVA,D

42.42±27.97 50.24±30.58 50.41±30.35 50.27±30.53 49.96±29.41

Concerning the sequential combinations, the order of the at-
tacks played a crucial role in the success rate of the adversarial
examples in white-box attacks, highlighting that ADVA,D is
capable of providing significantly higher liveness scores and,
therefore, APCER compared to ADVD,A. This suggests that
applying APGD first, followed by DeepFool to strengthen the
perturbation, was more effective in bypassing the FPADs. The
trend in black-box attacks is less evident, revealing similar
performance against the individual FPADs.

Among the latter, JLW and ZJUT were particularly vulner-
able to adversarial attacks. This suggests that these detectors
are highly susceptible to adversarial perturbations, even when
the attack is transferred from a white-box model. On the other
hand, the detector based on hand-crafted features, PADUnkFv,
showed more robustness to adversarial perturbation compared
to deep learning detectors, reporting 49.73% as the maximum
average score (that is, through ADVA,D), still significantly
increased compared to the original spoofs (29.25%).

B. Fingerprint Matching

The results obtained from the fingerprint recognition anal-
ysis, shown in Table II, revealed similar average matching
scores and variability between single and combined adversarial
attacks. This outcome underscores the minimal effect of the
sequential combination compared to the individual attacks
included at the recognition level.

The most relevant finding is that the matching scores
increased slightly, on average, after incorporating adversarial
perturbations (e.g., from 42.42% on the original spoofs to
49.96% after ADVA,D). Consequently, beyond improving the
capability of the fingerprint to bypass liveness detection,
these perturbations also have a slightly positive impact on
the likelihood that the matcher recognises a fake fingerprint
as belonging to the intended identity. This outcome can be
explained by the capability of the enhancement to highlight
the minutiae, hence aiding their extraction and the following
matching. Moreover, this also suggests that the adversarial
perturbations were subtle enough to deceive the liveness
detection system without significantly altering the fingerprint’s
distinctive features required for matching.

VI. KEY INSIGHTS

The trends observed in Section V allow us to draw some
important considerations about adversarial attacks and their
impact on liveness detection and fingerprint recognition:

• It is important to tailor the attack to the deception of both
the fingerprint matcher and the FPAD through spoofed
fingerprints rather than only the latter. This means that
the introduced adversarial perturbation must be limited
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to avoid the loss of characteristics required by the recog-
nition step. Therefore, a feasible trade-off between the
enhancement in the capability of misleading the liveness
detectors and the decay in the effectiveness of spoofs in
deceiving the recognition system is required.

• There is no adversarial attack that is always the best
one against all FPADs. However, this complementarity
could be exploited through a properly designed sequential
combination of different attacks.

• The order of attacks in the sequential combination may
have a significant impact on the overall deceiving capabil-
ity. According to the systems analyzed, this observation
is particularly relevant to white-box attacks.

• Introducing properly designed perturbations does not
necessarily reduce the ability of spoofs to bypass AFIS
recognition. On the contrary, introduced perturbations can
also emphasize minutiae, thus increasing the matching
probability.

VII. CONCLUSIONS

In this work, we evaluated the threat of white-box and
black-box combined adversarial attacks against Fingerprint
Presentation Attack Detectors in recognition scenarios. We
proposed an approach for strategically combining adversarial
techniques minimizing the introduced distortions to maintain
their ability to bypass AFISs, while still misleading FPADs. To
validate our proposal, we assessed the impact of state-of-the-
art adversarial techniques and their sequential combinations
on four benchmark FPADs and a baseline matcher.

Despite the limited techniques analyzed, results show that
adversarial attacks tailored to fingerprint recognition can sig-
nificantly undermine FPAD reliability. Strategically combining
these attacks further increases their effectiveness against both
fingerprint recognition systems and FPADs, posing a serious
risk to fingerprint-based authentication.

Future work should explore more fingerprint sensors, ad-
versarial attacks, and combination strategies, assessing their
impact on additional FPADs and recognition systems. The
effectiveness of physical replicas with combined perturbations
in realistic scenarios, as well as the vulnerability of contactless
sensors, should also be investigated.

We hope that the findings of this preliminary study and the
insights provided could contribute to the future development
of countermeasures against the emerging threat of the combi-
nation of spoofing and adversarial attacks.

ACKNOWLEDGMENT

This work was partially supported by project FAIR
(PE00000013) under the NRRP MUR program funded by the
EU–NGEU (CUP: J23C24000090007).

REFERENCES

[1] T. Matsumoto, H. Matsumoto, K. Yamada, S. Hoshino. “Im-
pact of artificial” gummy” fingers on fingerprint systems.” In
Optical security and counterfeit deterrence techniques IV, 2002,
https://doi.org/10.1117/12.462719

[2] L. Priesnitz, R. Casula, J. Kolberg, M. Fang, A. Madhu, C. Rathgeb,
G. L. Marcialis, N. Damer, C. Busch. ”Mobile contactless fingerprint
presentation attack detection: generalizability and explainability.” IEEE
T-BIOM, 2024, DOI: 10.1109/TBIOM.2024.3403770.

[3] M. Micheletto, R. Casula, G. Orrù, S. Carta, S. Concas, S. M. La
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