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Abstract—Recently, neural image codecs have demonstrated
impressive performance in image compression. Current ap-
proaches primarily focus on designing sophisticated context
mechanisms or network architectures for eliminating redun-
dancies within image data, which leads to more and more
computational resource requirements and increases the encoding
and decoding time. In this paper, we analyze the degradation
of compressed images from the perspective of Singular Value
Decomposition (SVD) and propose a novel rate-distortion (R-
D) optimization framework based on compressed image restora-
tion. Specifically, our method introduces an SVD-based basis
reconstruction error into the conventional R-D loss function,
enabling enhanced detail restoration capabilities. The proposed
optimization framework can be seamlessly applied to various
codecs optimized by the R-D loss without introducing addi-
tional learnable parameters or inference overhead. Extensive
experiments on public datasets show that our method achieves
performance gains across several neural image codecs compared
to the baseline, validating the effectiveness of the proposed
optimization framework.

Index Terms—Image compression, neural image codecs, rate-
distortion optimization, singular value decomposition, image
restoration

I. INTRODUCTION

Image compression is a fundamental task in the field of
image processing, with applications ranging from efficient
image storage to transmission over bandwidth-constrained
networks. The primary goal of image compression is to
eliminate the redundancies in image data while retaining the
essential information needed to reconstruct the images as
closely as possible to the original. Achieving high compression
ratios without significant quality degradation has been a long-
standing challenge in this field. Over the past few decades,
traditional image compression standards such as JPEG [1],
JPEG2000 [2], HEVC [3], and VVC [4], have been widely
adopted in practical applications due to their efficiency, ben-
efiting from years of development and optimization. These
codecs typically rely on hand-crafted modules, including fixed
transformations, quantization, and loop filters, to reduce spatial
redundancy and improve coding efficiency.

This work was supported in part by Shenzhen Science and Technology Pro-
gram under Project JCYJ20220530140816037, in part by ITF GHP/044/21SZ
and in part by Research Grants Council GRF-11200323. (Corresponding
author: Shigi Wang)

ISBN: 978-9-46-459362-4

1362

However, recent advances in deep learning have facili-
tated the development of neural image codecs, which have
achieved performance comparable to, and even surpassing
the traditional codecs in terms of reconstructed quality [5],
[6]. Unlike traditional codecs that rely on individually hand-
crafted modules, neural image codecs jointly optimize their
components and utilize learned representations through various
autoencoders, resulting in more efficient compression. These
learned models adapt to the complex statistical properties
of image data, enabling improved compression and recon-
struction capabilities. Nevertheless, the focus on designing
sophisticated structures, such as transformers [7] or a mixture
of transformers and CNN [8], to exploit contextual information
in image data has led to increased demands for computational
resources.

In this work, we aim to enhance the performance of
learned image compression by focusing on the restoration of
compressed images. Singular Value Decomposition (SVD) is
a powerful technique widely used in image restoration tasks
such as deblurring [9], denoising [10], or providing a uniform
solution for multiple degradations [11], [12]. We thoroughly
examine the relationships between original and compressed
images from the perspective of decomposition using SVD. Our
extensive analysis reveals that restoring the singular vectors of
compressed images can effectively recover a substantial por-
tion of the information loss during compression. Such a finding
is also observed in other degradations [12], claiming that the
singular vectors contain contextual information and details.
Building on these insights, we propose an SVD-based opti-
mization framework for image compression that maximizes
the preservation of critical information without increasing the
bitrate. To achieve this, we incorporate compressed image
restoration into the rate-distortion (R-D) optimization process
by introducing an SVD-based basis reconstruction error term
into the conventional R-D loss function.

The contributions of this work can be summarized as
follows:

o We thoroughly analyze the degradation of compressed
images from the perspective of decomposition using
SVD, revealing that the restored singular vectors can
effectively recover much of the information lost during
compression.
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e We propose an SVD-based optimization framework that
integrates image restoration into the R-D optimization
process by introducing a basis reconstruction error term
to maximize information preservation without increasing
the bitrate.

« Extensive experiments on public datasets show that our
method improves compression performance across multi-
ple neural image codecs, requiring no additional param-
eters or inference overhead.

II. PROPOSED METHOD

In this section, we first examine compressed images from
the perspective of SVD to gain insights into their textural
and structural characteristics (Sec. II-A). Building on these
insights, we then present a novel framework for optimizing
the neural image codecs (Sec. II-B).

A. Exploration on Compressed Images

SVD is a widely used technique for image restoration.
To analyze the degradation of compressed images, we apply
the SVD to both the compressed low-quality (LQ) data and
their corresponding original high-quality (HQ) counterparts in
both pixel space (image) and latent space (feature map). This
process yields the singular vectors and values for both the LQ
and HQ data, represented as follows:

qu = Ulqzlqvl;ra

(D
Xng = UngSngVigs

where X, and Xj,, are the LQ and HQ data being factored,
U. and V, represent the matrices of decomposed singular
vectors, 2, represent the singular values in the form of a
diagonal matrix. The data can be reconstructed through matrix
multiplication in an inverse process. When reconstructing the
LQ data, if we replace the left and right singular vectors
with their HQ counterparts, i.e., X, = UthquhE, we can
recover a substantial amount of the information lost during
compression, thus improving the quality of the recomposed
results. We refer to this process as “recomposition”, which we
apply in both pixel and latent spaces of the compressed images,
finding consistent improvements across various bitrates and
neural image codecs.

Fig. 1 illustrates the quantitative analysis of the recomposed
images for two examples using cheng2020-anchor [5] as the
neural image codec, along with the visualization results at the
lowest bitrate. The curves in the rightmost column indicate
that recomposition in both spaces consistently enhance the
PSNR, with recomposition in pixel space yielding a substantial
improvement over the LQ image. The visualization results
further demonstrate that pixel space recomposition restores
significantly more details, while performance in latent space
is constrained by the learned autoencoder of the neural image
codecs. Therefore, considering both performance and the high-
dimensionality of latent space, recomposition in pixel space
emerges as the more effective choice.

As the reconstruction process can be expressed as a linear
combination of a set of SVD basis components,

k
X=UxV' = Z ouv, )
=1

where k is the rank of X; o, u;, and v; denote the i-th
singular value, left singular vector, and right singular vector,
respectively. In our recomposition process, we utilize the HQ
singular vectors, which serve as high-quality bases containing
richer contextual information and details, leading to improved
reconstruction results.

B. SVD-based Optimization Framework

Neural image codecs are typically optimized using the R-D
loss, defined as follows:

L =R+ D, 3)

where R represents the estimated bitrate and D denotes the
reconstruction distortion, the latter is often measured by pixel-
wise mean square error (MSE). A is a weighting factor that
controls the trade-off between rate and distortion. The findings
from our exploration in Sec. II-A suggest that recovering a
portion of the corresponding HQ bases could significantly
enhance the reconstruction quality. Although the HQ bases are
not available during inference, we can impose some constraints
during training to facilitate the encoder in learning more
effective bases. Consequently, instead of solely optimizing
for pixel distortion in terms of MSE, we also take the basis
distortion into consideration. Specifically, the distortion is
comprised of a pixel error and an SVD-based basis error,
which can be formulated as,

D = ||Xng — Xigll3 + 1tl|lUngViy = UigVig [, 4

where X}, and X, here represent the original and compressed
images in pixel space, ;o is a weight set to balance the pixel
and basis errors, with a value of 10 in our experiments. The
first term captures the pixel error measured by MSE, while the
second term quantifies the difference between the compressed
LQ and original HQ bases, collectively forming the distortion
component of the R-D loss in Eqn. (3). The proposed SVD-
based optimization framework can be applied to any neural
image codecs optimized by the R-D loss function. It only
incorporates SVD during the training phase to calculate the
basis error, without introducing additional network parameters
or computational overhead during inference.

III. EXPERIMENTAL RESULTS

A. Implementation Details

We evaluate the proposed optimization framework on sev-
eral neural image codecs optimized by the conventional R-
D loss, including bmshj2018-hyperprior [13] (bmshj2018 for
short), mbt2018 [14], cheng2020-anchor [5] (cheng2020 for
short), and LIC-TCM [15]. For the first three codecs, we utilize
the implementations available on the CompressAl' platform,

Uhttps://interdigitalinc.github.io/Compress Al
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Fig. 1: Visualization of the compressed results (3rd column) and recomposed results in both latent space (4th column) and
pixel space (5th column), the corresponding PSNR values are provided under the results. Zoom in for a better preview.
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Fig. 2: Illustration of the proposed image compassion framework.

while LIC-TCM is evaluated using its official implementation. ~employing the loss function defined in Eqn. (3) and (4). For
We fine-tune the pre-trained model weights provided by their fine-tuning, we use randomly cropped image patches of size
original implementations rather than training from scratch, 256 x 256 from the DIV2K [16] training set, applying the
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Fig. 3: Visualization of reconstructed images from CLIC professional dataset based on the original cheng2020-anchor codec
(Baseline) and the one optimized with the proposed framework (Ours).

Model Kodak  CLIC  Tecnick
bmshj2018 0.00 0.00 0.00
Ours(bmshj2018) -1.74 -0.81 -1.96
mbt2018 0.00 0.00 0.00
Ours(mbt2018) -2.49 -0.66 -1.27
cheng2020 0.00 0.00 0.00
Ours(cheng2020) -5.00 291 -3.92
LIC-TCM 0.00 0.00 0.00
Ours(LIC-TCM) -1.14 -0.47 -0.84

TABLE I: The BD-rates (%) of our method on three test sets,
which are calculated relative to the original codecs, with lower
values indicating better compression performance.

Adam optimizer with an initial learning rate of le — 5 and
a batch size of 32. For evaluation, we use the Kodak [17],
CLIC [18] professional and the Tecnick [19] dataset. To
evaluate the R-D performance, we measure the rate in bits
per pixel (bpp) and assess the quality of the decompressed
images using PSNR and MS-SSIM [20].

B. R-D Performance

To compare the R-D performance of the proposed opti-
mization framework with the conventional R-D optimization,
we present the R-D curves in terms of PSNR and MS-
SSIM, as illustrated in Fig. 2. Our results indicate that the
proposed method achieves comparable, or even superior, re-
construction quality while using slightly fewer bits in most
cases compared to the baseline method utilizing pre-trained
models. This improvement suggests that the SVD-based basis
error effectively guides the reconstruction of better bases,
thereby enhancing the quality of the final output. Moreover,

the observed reduction in bitrates is primarily due to the
introduction of the additional basis error term in the distortion
calculation. As the distortion increases with a fixed )\, the
bitrate tends to decrease when optimizing using the R-D loss
depicted in Eqn. (3).

In Table I, we report the BD-rates [21] for quantitative
comparisons between the traditional R-D optimization (upper)
and our proposed optimization framework (lower). For each
codec, the BD-rate is calculated relative to the pre-trained
models, resulting in a BD-rate of O for the original codecs. No-
tably, the proposed method consistently achieves performance
gains across different neural image codecs on various test sets.
Furthermore, since we do not introduce additional network
parameters or processes at inference time, the encoding and
decoding time remain unchanged.

C. Qualitative Results

Fig. 3 presents visual comparisons of the baseline method
and our approach, showcasing two examples from the CLIC
professional dataset, with the original cheng2020-anchor used
as the baseline. The corresponding bitrate and PSNR values
are displayed beneath the results. Our method, which is opti-
mized for both pixel distortion and basis distortion, achieves
comparable visual quality to the baseline while utilizing less
bitrate and even attaining higher quantitative PSNR metrics.

IV. CONCLUSIONS

In this paper, we present a novel rate-distortion optimization
framework informed by our exploration of restoring com-
pressed images through the perspective of decomposition and
recomposition using SVD. Specifically, we introduce an SVD-
based basis reconstruction error into the conventional R-D
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loss function, facilitating the learning of restoration-enhancing
information. Our optimization framework can be seamlessly
integrated into various codecs optimized by the R-D loss
without introducing additional parameters or computational
overhead during inference. Extensive experiments demon-
strate that our method consistently achieves performance gains
across multiple neural image codecs and datasets. These results
underscore the effectiveness of leveraging SVD perspectives
to enhance image compression efficiency.
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