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Abstract—The paper investigates the adoption of generative
adversarial networks (GANs) for low-bit-rate learned image com-
pression, aiming to both preserve fine visual details and maintain
semantic and biometric consistency. The designed strategy is
based on the inversion of a StyleGAN image generation network
and the characterisation of noise and visual features through
strong quantisation and a side information channel. Experimental
results show that the images can be stored with a lower amount
of bits and present better visual details with respect to standard
state-of-the-art learned coding schemes.

Index Terms—low-bit rate, learned image compression, Style-
GAN, Inverse GAN, face compression.

I. INTRODUCTION

Learned image compression has recently experienced signif-
icant advancements and is widespread, thanks to the capability
of high compression gains (surpassing traditional coders like
JPEG or JPEG2000 [1]) and the adaptability that training pro-
cedures can achieve. For these reasons, several standardization
efforts have been carried out, leading to the recent finalization
of coding standards such as JPEG AI [1]. Most of the proposed
solutions rely on the core autoencoder architecture, where an
encoder network maps the input image into a set of latent
features that can be reconstructed by a following decoder
network. Parameters are optimized by a training process to
implement an efficient transformation that both reduces data
redundancy and grants a satisfying visual quality [2].

Unfortunately, like traditional coding schemes, such solu-
tions fail in modelling high frequencies whenever the coding
bit rate significantly lowers: reconstructed image looks highly
blurred leading to the corruption of finer details. To overcome
this, researchers have started investigating the possibility of
characterizing images at very low bit rates employing gener-
ative strategies like Generative Adversarial Networks (GANs)
[3] or Diffusion Models (DMs) [4], where the corrupted
information can be re-generated by the decoding network
itself. Although such solutions are capable of granting a very
high perceptual quality, fidelity can not be guaranteed posing
new challenges when adopted for semantic-oriented appli-
cations (e.g., object recognition) or biometrics (e.g., people
identification [5], [6]). These issues have, therefore created a
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divide between coding for humans and coding for machines
architectures whenever some generative strategy is going to be
applied in the compression network.

This work investigates the possibility of overcoming such
distinction by designing generative learned image coding sys-
tems that provide very good compression performances at low
bit rates while preserving the semantic information carried by
the original image. To this purpose, our architecture is based
on the StyleGAN network [7] and the capability of inverting
it [8], i.e., reversing the generation process that maps noise
sequences into images by training an encoder network. Since
StyleGAN images are modelled by the input pseudo-random
noise and the set of style features that control generation at the
different resolution layers, the approach proposed in this work
reduces the coded bit rate by adopting strong quantization and
signalling style features to the decoder with the transmission
of a compressed low-resolution version of the input picture
(side information).

In a nutshell, we can summarize the main innovations as
follows.

1) We designed a scheme based on an Inverse-StyleGAN
architecture [9] that first embeds an image into pseudo-
random noise space and a set of style features, which
are lately coded through strong quantization and side
information generation.

2) We conducted a comparative analysis on face datasets
showing that, although image fidelity can not be granted,
the proposed solution allows a good perceptual quality
in the reconstructed images (under different no-reference
metrics) reducing the overall bit rate concerning other
state-of-the-art learned compression strategies.

3) We verified that the proposed generative coding solu-
tions preserve biometric identification capabilities.

In the following, Section II overviews some state-of-the-
art strategies about learned compression and GAN inversion,
while Section III presents the proposed coding schemes. Sec-
tion IV reports some experimental evaluations and conclusions
are drawn in Section V.

II. RELATED WORKS

In recent years, learned image compression has been tackled
using variational autoencoders [1], [2], [10], where an hour-
glass network generates a set of latent vectors whose features
are regularized through a statistical prior that is used to esti-
mate symbols probabilities. Despite this, the adopted distortion
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Fig. 1. FeatureStyleEncoder and styleGAN encoding-decoding approach

metrics and convolutional architectures lead to unsatisfactory
perceptual quality at low bitrates as the reconstructed images
display evident low-frequency artifacts. For this reason, gener-
ative compression algorithms have been developed involving
GANs [11] or Diffusion models [4], [12]. These typically
exploit generative networks to reconstruct a visually pleasing
image at the price of higher reconstruction error.

As for Generative Adversarial Networks, the estimated
latent space (i.e., the input noise sequence of the generator)
provides an efficient framework for image editing [9] or
quality enhancement after standard reconstruction [13]. Other
works on GAN inversion show that this is useful in image
inpainting [14], outpainting [15] or denoising [16] as well.

The approach in [3] was designed for attribute editing and
finds a good trade-off among rate, distortion, and editability
with an adaptive distortion alignment and an editing map. In
[17], a 3D NeRF-based GAN is inverted to infer both camera
pose and latent; the approach in [18] inverts a 3D GAN using
symmetric prior.

As for diffusion models, several investigations focused on
the inversion of DMs for image editing [19] or reconstruc-
tion [20]. Indeed, such approaches rely on the fact that
such strategies can be inverted very easily (the inverse of
the diffusion process is a diffusion process itself), but the
computational requirements imposed by iteration make such
algorithms less suitable for low bit-rate compressions (often
the devices involved are low power).

Some additional research has been focusing on the adopted
noise models. As an example, the work in [21] discusses
the possibility of using heavy-tailed distribution in place of
Gaussian values within the image generation process. The
work in [22] investigates the impact of noise dimension on
the final reconstructed image, while the solution in [23] shows
how multivariate noise distributions permit handling multiple
image categories. Furthermore, recent work such as [24] high-
lights the benefits of operating in a perceptually aligned latent
space. Their Generative Latent Coding framework employs
a semantically rich latent representation—learned via VQ-
VAE—which better aligns with human perception and enables

high-fidelity, high-realism compression at ultra-low bitrates.
Unlike the aforementioned work, this paper aims to develop

a lightweight low-bit rate face coder that enables representing
a single image employing inverse GAN latent compression.

III. THE PROPOSED ARCHITECTURE

A. Inverting a Generative Adversarial Network

An inverse GAN (IGAN) network is a neural architecture
that reconstructs a latent noise z from an image x such that the
associated generator G(z) provides a realistic reconstruction
of the original image, i.e. :

z∗ = argmin
z

ℓ(G(z), x) (1)

where ℓ is a distance metric used to compare the quality of
the reconstruction of the image (typically, a fidelity metric).

In the considered framework, the inverse GAN IG maps the
input image into a noise vector (encoder), while the original
GAN transforms noise back into the image (decoder). To pro-
duce an optimal result, the training of IG [9] can be done over
a pre-trained GAN (e.g., StyleGAN [7]) or simultaneously
with the GAN. Note that, in the case of StyleGAN, inverting
the generative architectures implies mapping the input image
into a noise z (which can be considered an embedding for
the finest details) and a set of style features f (spatial and
structural characteristics) that operates at different resolution
levels [9]. Such architecture resembles that of an autoencoder
notably differing in the latent structure, which aims to preserve
meaningful structure in its latent space, making it more
interpretable or useful for tasks requiring semantic consistency.

Further compression over z and f has been taken into
account to reach a lighter representation. Such possibility can
be operated with reasonable complexity by approximating the
noise z via an invertible pseudo-random sequence created via
a Linear Congruential Generator (LCG) and designing an

efficient inversion strategy that can map the noise z back to
its originating seed value (see the following sections). Alter-
natively, noise can be approximated via a linear combination
of pseudo-random noise sequences or scalarly-quantized into
a sequence of integers. As for the specific use of an inverted
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StyleGAN, the style features f can be transmitted by inferring
such data from some properly transmitted side information.

B. From image to noise: designing and training the inverse
GAN

In our implementation, GAN and IGAN were trained sep-
arately to avoid model collapse and the extra complexity due
to simultaneous training.

Once the GAN has been created, IG parameters can be
trained using the MSE loss function to preserve the noise
structure:

LMSE = ||z − IG(G(ẑ))||2 . (2)

We considered a first vanilla implementation that used a
simple DCGAN to generate small resolution images (64 ×
64), where the generator and inverse network (encoder) have
a structure similar to that of the discriminator. In the encoder
(inverse generator), we replaced the activation functions of the
last layers with a hyperbolic tangent (Tanh) to produce a latent
sequence in the range [−1, 1] (LCG/Uniform compliant).

Then, in order to test the proposed solution on larger images,
we focused on a StyleGAN architecture capable of generating
faces sized 1024× 1024, using the implementation in [9].

C. Coding latent representation

To enhance storage efficiency and reduce computational
costs, two parallel compression techniques are applied to the
latent noise and style features used in the generation process:
one designed for the latent noise sequences z, and another
one which is specifically used to signal style features f to the
decoder.

Coding latent noise
Given the noise z resulting from the inversion process, it is
necessary to generate entropically efficient formatting to map it
into a constrained bitstream. At the beginning of such process,
sequences are normalized and centred (z′ = z − µz). The
initial approach explored is based on the idea of representing
any noise as a linear combination of LCG sequences, as seed
parameters can be easily estimated. Therefore, an image is
represented by pairs of seeds and weights

ż = w1LCG(s1) + w2LCG(s2) + ...+ wnLCG(sn) (3)

where ż approximates ẑ using a Gram-Schmidt orthogonal-
ization procedure starting from w1, s1 up to wN , sN . The
computational complexity can be tuned by selecting different
seed datasets; in our work, we tested three different seed
ranges.

Despite this, further experiments have shown that, at low-
rate operating points, simple scalar quantization performs
better, followed by a standard gzip compression.

Coding style information
To transmit style information with minimum impact of the
final bitstream, we use a low-resolution version of the input
image x as side information to infer f using the StyleGAN.
The overall scheme is reported in Fig. 1, as can be seen, image
x (1024×1024) is rescaled into xs (256×256 or 512×512),

and Cheng2020 compression is the applied on it [25]. At the
decoder, the reconstructed xs is upscaled to their original
resolution and used to extract feature vectors (fs) through
the IG process. The combination of these extracted feature
vectors with the de-quantized latent serves as the foundation
for generating high-quality reconstructions.

In the following, we will refer to this compression set-up
as proposed method (or proposed), in order to distinguish it
from noise composition.

IV. EXPERIMENTAL RESULTS

Similarly to other works in literature, performance is mea-
sured using different reference and no-reference quality met-
rics1:

• Mean Squared Error (MSE) or the logarithmic equivalent
for reconstruction accuracy Peak Signal-to-Noise Ratio
(PSNR)

• Structural Similarity Index (SSIM)
• Learned Perceptual Image Patch Similarity (LPIPS)
• Fréchet Inception Distance (FID)
• Natural Image Quality Evaluator (NIQE)
• Deep bilinear convolutional neural network (DBCNN)
• Multi-scale image quality (MUSIQ).

The first four account for the fidelity in reconstruction (refer-
enced), while the last three perform a no-reference evaluation
of image quality. The generated bit rate was measured in bit-
per-pixel (bpp).

To verify the efficiency of GAN inversion on faces, we
first considered the synthetic dataset Anime Faces of 64× 64
grayscale hand-drawn sketchy images; data were processed
using a vanilla GAN since the limited size of images did not
allow an easy adaptation to the most recent GAN networks.
In this case, no style information is present, and therefore, we
need to simply characterize the noise z via linear approxima-
tion. To this purpose, we considered two types of noise gener-
ators: pseudo-random Uniform and LCG. Moreover, quality
results were compared with those of standard autoencoder
(with the same later structure of the considered GAN for
the sake of fairness), where the number of latent features
corresponds to the number of basis noise and weights in the
linear composition (thus equalizing the bit rate). This choice
was motivated by the fact that small-resolution images are not
effectively compressed by state-of-the-art learned codecs.

The results in Tab. (I) show that despite fidelity can not be
ensured (as previous works highlighted) since AE embedding
ensures minimum MSE and maximum SSIM, the sharpness
and visual quality are much better for the GAN-based ap-
proach.

The approach has been tested on a face dataset made
of pictures from real people (Celeb HQ dataset) using the
FeatureStyleEncoder derived from the inversion of StyleGAN.

Experimental tests were performed on a selection of 20
images (10 male and 10 female) using the Cheng2020 model
with quality 2 and the proposed method using style embedding

1The references to the different metrics can be found in [4].
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TABLE I
MSE, SSIM, AND FID VALUES FOR IGAN CODERS (WITH UNIFORM AND

LCG NOISE) COMPARED TO A STANDARD AUTOENCODER.

Composition of uniform noise
Compression Image MSE SSIM FID

5 0.056232 0.246840 115.374329
10 0.043571 0.300170 114.668144
20 0.035309 0.354097 113.415405

Composition of LCG noises
Compression Image MSE SSIM FID

5 0.069271 0.195917 165.312332
10 0.124997 0.106405 163.898788
20 0.124159 0.105760 163.612579

Standard autoencoder
AE(7) 0.033821 0.364243 311.198334

AE(14) 0.028392 0.435497 285.047241
AE(28) 0.025243 0.494204 249.512772

TABLE II
EVALUATION OF COMPRESSION WITH DIFFERENT APPROACHES

Model ↓Bpp ↓lpips ↑PSNR ↑DBCNN ↓Niqe
Cheng2020 0.0663 0.2292 34.16 41.86 6.55

IG(LCG(256)) 0.3513 0.4980 14.99 55.41 4.57
Proposed 0.0620 0.3093 24.48 43.92 5.97

from downscale of size 512× 512 and once again Cheng2020
quality 2.

As observed in Table II, the linear LCG composition appears
inefficient both in terms of quality and compression, providing
slightly better results only in visual metrics. This suggests
that, with larger noise representations, the trade-off between
quality and compression becomes less favourable concern-
ing the proposed configuration. Furthermore, the proposed
approach demonstrates slightly better performance in almost
all no-reference quality metrics compared to cheng2020 (im-
plemented through the CompressAI library) despite the lower
Bpp, made exception for fidelity metrics (PSNR and LPIPS)
as the generative reconstruction limits such performance.

This underscores the fact that employing a compression
framework in combination with generative embeddings can
provide an extremely efficient way to represent good quality
images, albeit at the cost of reconstruction fidelity.

To test the algorithm at different rate points, we generated
the rate-distortion/quality curves reported in Figure 2. It is
possible to notice that proposed method consistently delivers
better results for NIQE and DBCNN across all levels, reaf-
firming its advantage in visual quality. These conclusions are
also motivated by a visual inspection of the reconstructed
images: details reported in Fig. 3 show that facial parts
reconstructed by standard learned codecs look very smooth
and lack sharpness.

Since pixel-level fidelity can not be granted by our gener-
ative proposed method, it is worth investigating if biometric
consistency is preserved, i.e., faces can be accurately identified
or recognized even though PSNR values are lower as can be
noticed by details in the picture 3. To this extent, we tested our
promising framework by comparing the reconstructed images
with other pictures of the same person and computing a

Fig. 2. Fidelity and visual-quality scores across different Bpp for Cheng2020
and the proposed method.

Fig. 3. Reconstruction details using proposed and Cheng2020 at approxi-
mately BPP 0.064.

biometric matching score, which was obtained by means of
a face recognition app Recognito [26].

The average score across 15 samples (see the results in
Table III) indicates that for the face-matching task, results
are very close, showing that a correct authentication is still
possible.

A. Ablation

We evaluate the design choices of our proposed method
by first demonstrating the effectiveness of each selected com-
ponent. Then, we analyze the components individually and
justify our selections.

As observed in Table IV, the ablation study confirms our
initial statement: style features primarily define the spatial and
structural details of the image, while latent noise controls
style attributes such as texture, colour, and structure. This
is evident from the fact that the model, which uses only
style features, performs well in fidelity metrics but suffers
significant quality degradation. Conversely, using only latent
noise produces high-quality images but with lower structural
fidelity. This is visually displayed by Fig. 4, where the pro-
posed method image without latent noise looks highly blurred
concerning its counterpart where style features were removed.
It is also possible to notice that traditional learned compression
(Cheng2020) highlights some artifacts (e.g., the top part of the
eye), giving a less natural look to the overall picture.
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Fig. 4. Comparison between the different approaches analyzed.

TABLE III
RECOGNITO MATCHING SCORE FOR FACE IDENTIFICATION.

Model Original Cheng2020 Proposed
Average score 0.9939 0.9941 0.9931

TABLE IV
ABLATION STUDY: THE IMPACT OF DIFFERENT COMPONENTS IN

RECONSTRUCTION

Model ↓Bpp ↑PSNR ↓LPIPS ↑DBCNN ↓Niqe
Full model 0.0620 24.48 0.3093 43.92 5.97

w/latent 0.0131 24.59 0.3433 34.60 6.90
w/feature 0.0489 19.82 0.3188 50.49 4.38

Our proposed approach leverages both elements, ensuring
a balance between image quality and structural accuracy,
resulting in more perceptually coherent reconstructions.

V. CONCLUSIONS

In this work, we propose novel image embedding ap-
proaches for low-bit-rate compression of face images using
an Inverse Generative Adversarial Network (IGAN). The pro-
posed scheme uses the generating input noise of GANs as
a latent feature representation for the image, thanks to the
inversion mechanism and approximates it employing linear
composition and quantization. When applied to StyleGAN,
the compression framework provides a suitable solution to

embed images w.r.t. visual quality, even with complex datasets
like Celeb HQ, outperforming learned approaches and making
the reconstructed images suitable for tasks such as face recog-
nition. This result suggests that further exploration should
investigate generative compression techniques that balance
rate-distortion performance while improving generalization
across diverse datasets.
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