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Abstract—Learned image compression introduces new chal-
lenges for image forensics, as deepfake detectors may mistakenly
classify authentic images as artificially generated due to compres-
sion artifacts or misidentify synthetic images that have undergone
neural compression as real. In this paper, the first neural image
compression system specifically designed for deepfake detection is
presented. To achieve this, spatial-frequency modulation adapters
are integrated into an existing image compression architecture,
eliminating the need to retrain the underlying codec. Images
decoded with the proposed method achieve detection perfor-
mance comparable to uncompressed images while also exhibiting
superior perceptual quality than images reconstructed from
conventional image compression.

Index Terms—Learned image compression, coding for ma-
chines, deepfake detection.

I. INTRODUCTION

Image compression has been an active research field for
decades, driven by the need for efficient storage and transmis-
sion across a wide range of applications that support modern
digital life. The recent rise of deep learning has sparked
a new wave of advancements in this domain, with end-to-
end learned compression systems gaining significant attention.
Unlike traditional approaches, these methods optimize the
entire compression pipeline holistically. Notably, some of the
latest works [1]–[5] have surpassed VVC, which is the most
advanced conventional image and video coding standard, on
key metrics such as Peak Signal-to-Noise Ratio (PSNR). These
results highlight the fact that learned image compression will
impact the next generation coding techniques [6].

However, the emergence of Learned Image Compression
(LIC) presents new challenges in image forensics [7], [8].
Image forensics refers to the field of study dedicated to ana-
lyzing digital images to determine their authenticity, integrity,
and origin. Given the increasing prevalence of AI-generated
media, it plays a crucial role in combating misinformation,
digital fraud, and other malicious uses of manipulated imagery.
Recently, it has been proved that LIC methods create specific
footprints that require dedicated analysis to understand and
leverage [9]. Furthermore, studies suggest that LIC techniques
leave characteristic upsampling artifacts, resembling those
observed with neural network generative models [8], [10].
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Fig. 1. High-level framework comparison between no compression, using
original LIC, and the proposed method.

These factors pose a critical concern: the risk of forensic de-
tectors mistakenly identifying authentic content as artificially
generated due to LIC traces [8]. More broadly, there is also
the potential for misclassification of synthetic images that have
undergone neural image compression, further complicating
forensic analysis (see Fig. 1).

The problem can be illustrated through the simplified visu-
alization in Fig. 2(a). In this representation, real and synthetic
images are depicted as two distinct distributions, with blue
crosses denoting real images and red crosses representing
synthetic ones. Ideally, a well-trained real vs. synthetic image
detector, which is represented by a black decision boundary,
should effectively separate these two clusters. However, when
images are compressed using a specific LIC method, their
pixel distribution shifts (blue circles). As a consequence, the
detector may struggle to distinguish between them accurately,
leading to potential misclassification.

A possible approach to solve this issue is to retrain the
detector to correctly identify compressed real images as real
rather than misclassifying them as synthetic. This involves
adjusting the decision boundary so that real images, even after
compression, remain within the real image distribution, as
depicted in Fig. 2(b). However, retraining an entire detector, or
more generally a recognition model, to incorporate new data
may not always be the most optimal solution. This approach
can be computationally expensive due to the complexity of
the training process, requiring significant time and resources.
Additionally, retraining a model each time new data is intro-
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(a) Problem formulation: a pre-trained detector
may misclassify the compressed real images.
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(b) First approach: re-train the detector.
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(c) Second approach: guide the compression pro-
cess, preserving deepfake detection capabilities
(ICM).

Fig. 2. A simplified visualization of the clustering process for a trained real vs. synthetic image detector, represented by a black decision boundary. While
uncompressed real images (blue crosses) and synthetic images (red crosses) are well-separated, compressed real images (blue circles) may be misclassified.
For clarity, only the distribution of compressed real images are shown. The same analysis applies to compressed synthetic images as well.

duced is inefficient and impractical. Furthermore, modifying
the model in this way carries the risk of altering its overall
performance, potentially degrading its accuracy on previously
learned data or introducing unintended biases.

An alternative recent approach to addressing this issue is to
modify the compression model rather than retrain the detector.
Instead of adjusting the decision boundary of the recognition
model, we can guide the training of the compression algorithm
to ensure that the compressed images remain within the
distribution of real images, as shown in Fig. 2(c). This strategy,
known as Image Coding for Machines (ICM), focuses on
optimizing the compression process to produce images that are
more suitable for specific downstream tasks. In the proposed
scenario, the goal would be to tailor the compression model
to preserve the forensic characteristics necessary for accu-
rate deepfake detection. However, while this approach avoids
modifying the detector, it still requires retraining the entire
compression model, which is still computationally inefficient.

To address these challenges, in this paper, we propose to
integrate the Spatial-Frequency Modulation Adapter (SFMA)
proposed in [11] into an existing neural image compression
system, tailoring it specifically for the task of deepfake detec-
tion. SFMA removes non-semantic redundancy using a spatial
modulation adapter while enhancing task-relevant frequency
components and suppressing task-irrelevant ones through a
frequency modulation adapter. The goal is to generate com-
pressed images that are correctly classified by a deepfake
detection system without modifying or retraining either the
base codec or the detector. Moreover, it will experimentally be
shown that it benefits the perceptual quality of reconstruction
for real content.

The main contributions of this paper are:

• The first neural image compression system specifically
designed for deepfake detection is introduced.

• The proposed model integrates the SFMA, training it ex-
clusively while keeping the main image codec unchanged.

• Experimental results indicate that images decoded using
the proposed method achieve performance levels close

to those of uncompressed images and comparable to the
fully fine-tuned approach.

• Experimental results also demonstrate that decoded im-
ages including SFMA achieve superior perceptual quality
compared to reconstructed images of the original LIC
optimized for PSNR.

II. PRELIMINARIES

A. Learned image compression

An end-to-end learned image compression system typically
consists of two primary components: the main autoencoder and
the hyperprior autoencoder. The main autoencoder includes
an analysis transform ga and a synthesis transform gs. The
analysis transform ga encodes an RGB image x ∈ RH×W×3,
with height H and width W , into a smaller latent representa-
tion y ∈ RH

16×
W
16×Cy using an encoding distribution qga(y|x).

The latent y is then uniformly quantized as ŷ and entropy
encoded into a bitstream using a learned prior distribution
p(ŷ). On the decoder side, ŷ is entropy decoded and recon-
structed as x̂ ∈ RH×W×3 through a decoding distribution
qgs(x̂|ŷ), implemented by the synthesis transform gs. During
this process, the prior distribution p(ŷ) significantly influences
the number of bits required to signal the quantized latent ŷ.
To address this, it is typically modeled in a content-adaptive
manner by a hyperprior autoencoder [12], which consists of
a hyperprior analysis transform ha and a hyperprior synthesis
transform hs. Specifically, ha transforms the image latent y
into an even smaller side information z ∈ RH

64×
W
64×Cz , which

statistically models a co-located portion of the compressed
bitstream. The quantized version of z is decoded from the
bitstream through hs, resulting in p(ŷ). In this work, we adopt
the image compression model proposed in [13] as a reference.

B. Synthetic image detection

The rapid advancement of AI has made it possible to
generate highly realistic synthetic images and videos, com-
monly known as deepfakes [14]. In particular, deep learning
techniques can create synthetic images with unprecedented
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Fig. 3. The architecture of the proposed compression system for deepfake detection and the introduced adapters.

realism, posing a serious threat to the trustworthiness and
integrity of multimedia content. To counter the spread of such
manipulated content, the multimedia forensics community has
placed significant focus on developing effective detection tools
and techniques [15]–[17].

In this work, the forensic detector recently introduced
in [16] is considered, which has demonstrated outstanding
performance in distinguishing real from synthetic images
depicting different semantic contents. This detector operates
by extracting small square patches from the input image and
aggregating their features to produce a single detection score
per image. In specific, the detector randomly extracts N = 800
color patches {Pi}N1 with size 96×96 pixels, regardless of the
input image size. Every patch is processed through a backbone
Convolutional Neural Network (CNN) [18], which assigns a
detection score si, where si > 0 indicates that the patch is
classified as synthetic and real otherwise. Finally, the scores
are aggregated by selecting the M highest values, correspond-
ing to the uppermost 75%, and computing their arithmetic
mean. The final image score is defined as sI =

∑M
i si/M .

III. PROPOSED METHOD

A. System Overview

In this paper, a novel learned image compression system
specifically designed for deepfake detection is proposed. Con-
ventional pre-trained deepfake detectors are prone to suffer
significant drop in performance when encountering com-
pressed images, particularly at lower bit-rates. To address
the issue, the Spatial-Frequency Modulation Adapter [11] is
integrated into an off-the-shelf learned image compression
system to modulate the reconstructed image signals better
suited for the downstream detector instead of reconstruction
fidelity. This approach ensures that the reconstructed images
remain within the decision bounds for improved classifica-
tion accuracy. Moreover, the flexibility of the base codec is
preserved, as the SFMA modules can be selectively removed
to restore pristine reconstruction quality suited for minimal
distortion upon reconstruction.

B. Adaptation for Deepfake Detection

Fig. 3 illustrates the overall system architecture, where the
base codec is derived from [13]. Unlike the approaches that
require re-training an entire codec, lightweight modulation
adapters are included into both the encoder ga and decoder gs.
Specifically, three separate SFMAs are inserted between each
Swin Transformer Block (STB) and convolutional layer. The
SFMA has two main components: Spatial Modulation Adapter
(SMA) and Frequency Modulation Adapter (FMA). These
components adjust the image representation in the spatial and
frequency domains, respectively in parallel. In each SFMA, the
input features from the base codec are processed separately by
SMA and FMA, and their outputs are combined via element-
wise summation with the original features (Fig. 3 (b)).

The Frequency Modulation Adapter modifies the feature
representations in the frequency domain. This is achieved
by first applying Fast Fourier Transform (FFT) to extract
frequency components. The transformed features are then
modulated though element-wise multiplication with the matrix
obtained through a lightweight processing pipeline comprising
a convolutional layer, a linear layer, and ReLU activations.
Finally, an inverse FFT is applied to obtain resulting features
(Fig. 3 (c)). On the other hand, the Spatial Modulation Adapter
operates directly in the spatial domain without performing
FFT/IFFT. It applies a similar transformation mechanism as
FMA, using convolutional layers. (Fig. 3 (d)). By jointly
modulating both spatial and frequency information, the pro-
posed approach effectively aligns reconstructed images with
the expectations of the target deepfake detector.

C. Training Objective

The proposed method follows the standard training
paradigm for learned image compression, utilizing a rate-
distortion (RD) optimization objective. In symbols, we have

L = − log p(ẑ)− log p(ŷ|ẑ)︸ ︷︷ ︸
R

+λ·(LC(D(x̂), g) + LP(x, x̂;D))︸ ︷︷ ︸
D

,

(1)
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Fig. 4. Rate-accuracy comparison. Fig. 5. Detection score distribution on real and synthetic images across different settings.
Positive (negative) detection scores indicate the images are classified as synthetic (real).

where R represents the total estimated bit rate, and D quantifies
the effect of the distortion in the reconstructed image x̂ on the
performance of the deepfake detector D. The hyperparameter
λ controls the trade-off between D and R. Specifically, the
distortion D is measured using two loss functions: (i) LC,
which represents the cross-entropy loss between the ground
truth label g of x and the detector’s output D(x̂), and (ii) LP,
a perceptual loss computed as the Mean Squared Error (MSE)
between the intermediate features F extracted by the detector
D when processing the original uncompressed image and the
reconstructed image, that is LP = MSE (F(x),F(x̂)). This
second term enforces alignment between the two feature repre-
sentations, reducing discrepancies introduced by compression
that may affect deepfake detection. Throughout the training
process, the base codec parameters remain frozen, while only
the SFMA modules are learned.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

Deepfake Detector and Dataset. In this work, the real versus
synthetic detector from [16] has been used as target deepfake
detector, with no modifications or fine-tuning. The considered
dataset contains images that the pre-trained detector can cor-
rectly classify in their uncompressed form. To this end, images
from the original training dataset [16] that includes real and
synthetic human faces have been chosen. The real images
are sourced from FFHQ [19] and CelebAHQ [20], while the
synthetic images are generated using a wide variety of state-
of-the-art generative models ranging from GANs to diffusion
models. The proposed system has been trained with roughly
11,000 images, with additional 4,000 images for evaluation.
Both training and evaluation sets maintain a balanced ratio of
real and synthetic images.
Training and Evaluation. The pre-trained TIC [13] is the base
codec for all experiments. To expedite the training process,
input images are randomly cropped to 256 × 256 before
encoding, and the reconstructed images are processed by the
detector using 50 patches to compute the cross-entropy loss
and perceptual loss. Separate models have been trained using
four different rate parameters λ ∈ {0.02, 0.03, 0.045, 0.07},
corresponding to different bit rates. Training is conducted on

50 epochs using an Adam optimizer and a learning rate of
0.001, which is reduced by half after 30 epochs.

For evaluation, the proposed method has been compared
against two baselines: (1) the base codec optimized for PSNR
and (2) a fully re-trained codec optimized for deepfake detec-
tion with the same proposed training objective. The deepfake
detection process in evaluation follows exactly the original
approach in [16], with M = 600 and top-1 accuracy and bits
per pixel (bpp) as main evaluation metric.

B. Performance Comparison

Fig. 4 shows the rate-accuracy performance comparison
between the three methods. The detection accuracy using un-
compressed images serves as the upper bound, achieving 100%
accuracy. Three key observations are drawn from Fig. 4: (1)
The detection accuracy for images compressed with the base
codec shows a drastic drop, nearing random guessing at the
lowest rate point. (2) The proposed method, which integrates
SFMA into the fixed base codec, achieves a considerable accu-
racy improvement with up to a 45% gain, reaching an overall
accuracy of 96% even at extremely low bit rates (≈ 0.05
bpp). (3) Compared to full re-training of the base codec,
the proposed method achieves comparable performance while
requiring significantly fewer learnable parameters, making it
a more efficient solution.

Detection scores obtained from reconstructed images of
the different settings are used to investigate the effect of
the proposed method (see Fig. 5). We recall that a positive
detection score indicates the image is classified as synthetic,
while a negative score signifies it is classified as real (see
Sec. II-B). The score distribution of the base codec has a mean
close to 0 for both real and synthetic images, indicating that
the detector fails to differentiate between them. This suggests
that compression artifacts disrupt the features necessary for
an accurate classification. In contrast, the proposed method,
as well as the fully re-trained model and the detector applied
to uncompressed images, result in distinct score distributions,
with most real images leading to negative scores while syn-
thetic images leading to positive ones.
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(a) PSNR↑ (b) FID↓

Fig. 6. Rate-distortion performance comparison on PSNR and FID.

Fig. 7. Reconstructed images of different settings.

C. Reconstruction Quality Comparison

Fig. 6 compares RD performance using PSNR and
FID [21], where FID measures perceptual similarity to un-
compressed images, capturing realism-related distributional
differences [22]. While the base codec achieves higher PSNR,
the proposed method yields lower (better) FID scores, indicat-
ing greater realism and a distribution closer to uncompressed
images. This explains why the proposed approach induces
a better preservation of the information needed for accurate
deepfake detection.

A qualitative comparison of reconstructed images is also
shown in Fig. 7. The base codec removes fine details and
produces smoother, slightly blurred images. In contrast, the
proposed method preserves more textural details while main-
taining good perceptual quality. On the other hand, full re-
training introduces heavy artifacts, leading to visually unap-
pealing reconstructions.

V. CONCLUSION

LIC poses challenges for image forensics, as it can lead to
misclassification of both authentic and synthetic images. In this
work, the first neural image compression system tailored for
deepfake detection has been proposed by integrating an SFMA
into an existing codec, avoiding the need for full retraining.
Experimental results demonstrate that the proposed method
achieves detection performance close to uncompressed images
while also enhancing perceptual quality with respect to images
reconstructed from the original LIC scheme.
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