
Multidimensional Beamspace Processing for
FMCW Automotive Radar

Damir Rakhimov∗, Ruxin Zheng†, Shunqiao Sun†, and Martin Haardt∗
∗ Communications Research Laboratory, Ilmenau University of Technology, Germany

† Department of Electrical and Computer Engineering, The University of Alabama, USA

Abstract—In this paper, we present a gridless 3-D parameter
estimation method for Frequency-Modulated Continuous-Wave
(FMCW) automotive radar systems that is based on the recently
developed framework of 3-D ESPRIT in DFT beamspace. The
proposed method is search-free and enables the simultaneous esti-
mation of key parameters, such as azimuth, speed, and range, for
every target. The algorithm incorporates a tensor representation
of signals and ensures the automatic pairing of parameters across
different modes. Simulation results demonstrate the effectiveness
of the presented approach in achieving high-resolution parameter
estimation.

Index Terms—automotive radar, FMCW, harmonic retrieval,
tensors, CPD, ESPRIT in DFT beamspace

I. INTRODUCTION

Automotive radar has become an indispensable component
of modern vehicles, enhancing safety and providing reliable
information about the surroundings in all weather conditions
[1]–[3]. Among various architectures, FMCW radar is widely
adopted due to its low cost, low power consumption, and its
ability to simultaneously estimate range and velocity. However,
increasing demands for higher resolution require methods
surpassing FFT-based periodograms, which are limited by
the Rayleigh resolution limit. At the same time, advanced
methods such as MUSIC [4], ESPRIT [5], and compressed
sensing techniques [6], [7] overcome these limitations but are
computationally impractical for automotive radars due to the
constraints of the onboard processing units.

On the other hand, recent studies [8]–[10] highlight the ben-
efits of beamspace processing, which has the potential to re-
duce the computational complexity by operating in a reduced-
dimensional signal space and enables parallel processing for
disjoint groups of beams. The beamspace transformation can
be efficiently implemented via an FFT, which is a core part
of the signal processing chain in modern automotive FMCW
radars.

Numerous studies have explored high-resolution beamspace
parameter estimation for automotive radar applications. For ex-
ample, in [9], the authors propose a 1-D estimation algorithm
based on beamspace MUSIC for FMCW radar to estimate
the Directions of Arrival (DoAs) of impinging signals with
reduced complexity when prior knowledge of the field of view
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is available. However, the results are limited by the use of a
one-dimensional system model, which restricts applicability
in multidimensional scenarios. In [11], the authors present
a high-resolution algorithm for the joint estimation of range
and velocity. The method employs real-valued processing and
achieves pairing between the estimates via a simultaneous
diagonalization of a matrix whose real and imaginary parts
comprise the range and the velocity information, respec-
tively [12]. Despite its advantages, the approach suffers from
the high computational complexity of full-size element-space
processing, and its pairing strategy is not applicable for multi-
dimensional estimation problems. In [10], the authors present a
3-D super-resolution algorithm for millimeter wave (mmWave)
FMCW radar. The method is based on a multi-dimensional
extension of beamspace MUSIC, enabling the joint estimation
of range, azimuth, and elevation angles. Similar to the previous
study, the beamspace formulation significantly reduces the
computational complexity while maintaining a high-resolution
accuracy of estimates. However, despite the dimensionality
reduction, the MUSIC algorithm still requires an exhaustive
joint search over multiple domains, which limits its practical
application. Given the limitations of the currently available
methods, it is essential to investigate the alternative approaches
that avoid manifold search for parameter estimation, aiming
to balance computational complexity and resolution accuracy.
For a comprehensive overview of the current state of research
in the field of automotive radar, we refer to the review papers
[1], [13], [14].

In this work, we propose a 3-D high-resolution estima-
tion algorithm for FMCW radar, based on R-D ESPRIT in
DFT beamspace [15]. The algorithm enables joint estimation
of range, Doppler, and azimuth, with automatic parameter
pairing across modes, achieved using Simultaneous Matrix
Diagonalization (SMD) methods such as [16]. We demonstrate
how the 3-D estimation method fits into the FMCW radar
system model and how the target parameters can be extracted.
The proposed approach belongs to the class of search-free,
gridless methods while achieving a comparable estimation
accuracy as the MUSIC algorithm. Additionally, the algorithm
has the potential to significantly reduce the computational
complexity compared to conventional methods by applying
reduced-dimensional beamspace processing to the received
signals when prior information is available about the Sectors
of Interest (SoI).

In this paper, we follow the same notation as in [15].
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II. PROBLEM FORMULATION

In this section, we present the signal model of an FMCW
radar equipped with an array of antennas. Additional details
can be found in [17]. We use the subscripts R, D, and A to
denote the range, Doppler, and azimuth dimensions, respec-
tively. For this work, we assume a single transmit antenna
and MA receive antennas. The receive antennas are arranged
in a uniform linear array (ULA) with an equidistant spacing
of d = λcr/2, where λcr is the nominal carrier wavelength.
Transmission consists of a sequence of MD chirp pulses,
where each chirp has a duration of MR sampling intervals.

A. Basics of FMCW radar

The FMCW type of radar is a widely used scheme in the
automotive industry due to its capability to accurately estimate
the range, Doppler, and angle of detected targets. The sensing
signal is transmitted in the form of a series of pulses, where
an individual pulse is known as a chirp, which represents a
complex-valued sinusoid with a linearly increasing instanta-
neous frequency over time. The instantaneous frequency of the
transmitted chirp is expressed as fT(t) = fcr+

W
T t, t ∈ [0, T ],

where fcr is the carrier frequency, W is the chirp bandwidth,
and T is the pulse repetition interval (PRI) at which FMCW
radars transmit chirps. For Doppler estimation, we collect a
burst of MD consecutive pulses. We assume that a single PRI
consists of MR = T/Ts samples, where Ts is the sampling
interval.

After downconversion, filtering, and sampling, the received
signal for a single chirp after the environment with multiple
targets can be approximated as [17]

zp(t) =

L∑
ℓ=1

α′
ℓexp

(
j2π

[(
2fcrvℓ

c
+

2WRℓ

T c

)
t

])
, (1)

where α′
ℓ = αℓ · exp

(
j2π 2fcrRℓ

c

)
is the effective intensity of

the ℓ-th target and c is the speed of light.
A single chirp cannot resolve range and Doppler simulta-

neously, but a sequence of MD chirp pulses, also known as
a pulse train, can resolve these parameters. In this case, the
received signal can be written as

zt(t) =

MD−1∑
k=0

zp (t− kT ) · rect
(
t− T/2− kT

T

)
, (2)

where k ∈
{
0, ..,MD − 1

}
denotes the pulse index.

After time-domain sampling, the signal is reshaped into a
matrix, where each column contains fast-time samples from
a single pulse, and different columns represent slow-time
snapshots across multiple pulses. The time instance of a
particular sample in the pulse train is given as t(n, k) =
(n+ k ·MR ) · Ts, where n ∈

{
0, ..,MR − 1

}
represents the

sample index within a chirp, MR denotes the number of fast-
time samples per chirp, k is the pulse index, and Ts ≤ 1

2fmax
b

is the sampling interval with fmax
b = max

ℓ

{
2fcvℓ

c + 2WRℓ

Tpc

}
being the maximum beat frequency that is determined by
the maximal detection range and velocity [1]. Following this

convention, the signal zt(t) can be rewritten in terms of the
parameters n and k as

zt(n, k) =

L∑
ℓ=1

α′
ℓexp (j n µR,ℓ + j k µD,ℓ) , (3)

where µR,ℓ = 2π
(

2fcrvℓ
c + 2WRℓ

T c

)
Ts is the angular fre-

quency for range, and µD,ℓ = 2π 2fcrvℓ
c MRTs is the angular

frequency for velocity, where we have imposed an additional
assumption, 2WRℓ

T c MRTs ≈ 0 to simplify the resulting expres-
sion.

B. Signal Model for a Uniform Linear Array

For a ULA, depending on the index of the antenna element,
the received signal will experience an additional delay, which
depends on the direction of arrival. Assuming the first antenna
element as a reference point and far-field propagation, the
delay at the m-th antenna element can be expressed as
τA,ℓ[m] = md

c sin (θℓ), where m ∈
{
0, ..,MA − 1

}
is the

antenna index, d is the spacing between adjacent antenna
elements, and θℓ is the angle of arrival of the ℓ-th source with
respect to the boresight direction.

Assuming a narrowband model, the signal at the m-th
antenna can be rewritten as

s(t− τA,ℓ[m]) ≈ s(t)exp (−j2πfcrτA,ℓ[m]) = s(t)ej mµA,ℓ , (4)

where µA,ℓ = −2π d
λcr

sin (θℓ) is the spatial frequency corre-
sponding to the azimuth of the ℓ-th target.

C. Tensor Signal Model

The noiseless received signal after downconversion zt(t) at
the m-th antenna for the n-th sample of the k-th chirp pulse
can be written as

zt(m,n, k) =

L∑
ℓ=1

α′
ℓe

jnµR,ℓ+jkµD,ℓ+jmµA,ℓ . (5)

Hence, the overall received signal, collected from MA anten-
nas over MD chirp pulses, with each chirp containing MR

samples, can be represented as a tensor Z ∈ CMR×MD×MA .
This tensor can be written in a compact form via a Canonical
Polyadic Decomposition (CPD) [18] as

Z = I4,L ×1 AR ×2 AD ×3 AA ×4 α
T, (6)

where Ar ∈ CMr×L, ∀r ∈
{
R,D,A

}
is the Vander-

monde matrix with the ℓ-th column defined as ar,ℓ =[
1, ejµr,ℓ , · · · , ej(Mr−1)µr,ℓ

]T
and α =

[
α′
1, · · · , α′

L

]T
is the vector with intensity coefficients for all targets.

The obtained system representation is a canonical signal
model for multidimensional high-resolution parameter esti-
mation (HRPE). Thus, the corresponding frequencies can be
estimated via various available state-of-the-art algorithms for
multidimensional parameter estimation, such as [15].

D. Additional Preprocessing Steps

In highly dynamic environments with limited snapshots and
correlated echoes, subspace-based methods may fail to provide
accurate estimates of target parameters. In such scenarios,
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preprocessing techniques such as Spatial Smoothing (SpS) and
Forward-Backward Averaging (FBA) might help decorrelate
signals and increase the number of available samples for
subspace estimation [19], [20].

In this work, despite having a limited number of antennas
and chirp pulses, SpS is applied along each dimension. The
simulation results show that this leads to improved parameter
estimation accuracy across all modes.

E. Beamspace Transformation

Let Fr ∈ CMr×Mr , ∀r ∈
{
R,D,A

}
be the DFT beamspace

transformation matrix for the r-th mode with phase-shifted and
normalized columns. The κr-th column related to the beam
κr ∈

{
0, ..,Mr − 1

}
can be written as

f (r)
κr

=
e
−j

(
Mr−1

2

)
γκr

√
Mr

[
1 ejγκr · · · ej(Mr−1)γκr

]T
, (7)

where γκr
= κr

2π
Mr

is the center of the κr-th beam, ∀r ∈{
R,D,A

}
. Please note that the matrix Fr can be obtained by

applying an FFT transform followed by a multiplication with
a diagonal matrix containing the corresponding phase shifts.

The signal Zdft ∈ CMR×MD×MA×1 after the beamspace
transformation can be written in a tensor form as

Zdft = Z ×1 FR
H ×2 FD

H ×3 FA
H

= I4,L ×1 BR ×2 BD ×3 BA︸ ︷︷ ︸
B

×4α
T, (8)

where the matrix Br = Fr
H ·Ar ∈ CMr×L, ∀r ∈

{
R,D,A

}
is the beamspace steering matrix for the r-th mode and the
tensor B ∈ CMR×MD×MA is the DFT beamspace steering
tensor for all modes.

III. 3-D ESPRIT IN DFT BEAMSPACE

This section provides a short summary of 3-D ESPRIT in
DFT Beamspace for a noiseless signal model.

Following [12], [15], we can write a shift-invariance equa-
tion for L targets impinging the sensor grid in the r-th mode
and the full-size DFT beamspace transformation as

Gr,1BrΦr = Gr,2Br ∈ CMr×L, (9)

where Φr = diag
(
ejµr,ℓ

)L
ℓ=1

is a diagonal matrix with infor-
mation about the spatial directions towards different targets in
the r-th mode, Gr,1 ∈ CMr×Mr and Gr,2 ∈ CMr×Mr are the
selection matrices1 defined as

Gr,1 =



1 e
−j π

Mr 0 · · · 0

0 e
−j π

Mr e
−j 2π

Mr · · · 0

0 0 e
−j 2π

Mr · · · 0
...

...
...

. . .
...

(−1)Mr 0 0 · · · e
−j(Mr−1) π

Mr


(10)

and Gr,2 = G∗
r,1.

This shift-invariance property can also be written in the
tensor form as

B ×r Gr,1 ×4 Φr = B ×r Gr,2, (11)

1Please note that the full-size selection matrices Gr,1 and Gr,2 are only
of rank (M − 1). Therefore, one of the M rows can be excluded in case of
processing in full-dimensional DFT beamspace.

Algorithm 1 3-D ESPRIT in DFT Beamspace
for automotive FMCW radar

1: Training phase
• Collect received signals for MD chirp pulses
• Build the received signal tensor Z ∈ CMR×MD×MA×1

2: Pre-processing
• Perform Smoothing along each mode

– Zsps ∈ CMsub,R×Msub,D×Msub,A×Nsub

• Calculate beamspace transformation along each mode
– Zdft = Zsps ×1 FR

H ×2 FD
H ×3 FA

H

• Apply Forward-Backward averaging

– Zfba =
√
2
[
Zdft 4 Z∗

dft

]
3: Signal subspace estimation

• Compute SVD of
[
Zfba

]T
(4)

and truncate it to rank L

–
[
Zfba

]T
(4)

≈ Us ·Σs · V H
s

• Determine the signal subspace tensor Us

– Us = reshape
{
Us

}
∈ CMsub,R×Msub,D×Msub,A×L

4: Solution of the shift-invariance equations
• Construct the beamspace selection matrices for each mode

– Gr,1 ∈ CMr×Mr and Gr,2 ∈ CMr×Mr , ∀r ∈
{
R,D,A

}
• Construct 3 shift invariance equations

– Us ×r Gr,1 ×4 Ψr ≈ Us ×r Gr,2, ∀r ∈
{
R,D,A

}
• Solve the equations for Ψr ∈ CL×L, ∀r, e.g., via LS

5: Angular frequency estimation
• Obtain the estimates of Φ̂r via joint EVD of Ψr , ∀r
• Compute estimates of frequencies

– µ̂r,ℓ = arg
(
λr,ℓ

)
, ∀r ∈

{
R,D,A

}
,∀ℓ ∈

{
1, .., L

}
6: Target parameters estimation

• Calculate velocity as vℓ =
µ̂D,ℓc

4πfcrTs
, ∀ℓ

• Calculate range as Rℓ =
(

µ̂R,ℓ

2πTs
− 2fcrvℓ

c

)
Tc
2W

, ∀ℓ

• Calculate angle as θℓ = arcsin
(
− µ̂A,ℓλcr

2πd

)
, ∀ℓ

where B ∈ CMR×MD×MA is the beamspace steering tensor
for all modes. The matrix Φr = diag

(
ejµr,ℓ

)L
ℓ=1

∈ CL×L

contains the information about the spatial directions towards
different sources in the r-th mode.

The shift-invariance property for the r-th mode can also
be written in a matrix form via the 4-mode unfolding of the
beamspace steering tensor as

G̃r,1 · [B ]T
(4)

·Φr = G̃r,2 · [B ]T
(4)

, (12)

where G̃r,j ∈ CM×M , j ∈
{
1, 2

}
, M =

∏3
r=1 Mr is the

matrix version of the multidimensional selection matrices that
can be found as

G̃r,j = I∏3
r̄=r+1 Mr̄

⊗Gr,j ⊗ I∏r−1
r̄=1 Mr̄

. (13)

During the estimation step, the tensor B ∈ CMR×MD×MA×L

is unknown, but we can calculate the corresponding tensor
signal subspace U s via an SVD that is related to the steering
tensor as B = U s ×4 K. Hence, we rewrite equation (12) by

G̃r,1 [U s ]
T
(4)

KΦrK
−1︸ ︷︷ ︸

Ψr

= G̃r,2 [U s ]
T
(4)

. (14)

In the next step, we estimate the matrix Ψr using, for example,
the method of least squares as

Ψr =
(
G̃r,1 [U s ]

T
(4)

)+
·
(
G̃r,2 [U s ]

T
(4)

)
. (15)

1389



Then the matrix Φr can be estimated via an eigenvalue
decomposition of Ψr since Φr is diagonal and the product
KΦrK

−1 has a similar form as an eigenvalue decomposi-
tion. To achieve automatic pairing between the parameters in
different modes, a joint eigenvalue decomposition or Schur
decomposition can be calculated to diagonalize the matrices
Φr simultaneously for all modes and find the eigenvalues
Λr = QΨr Q

−1, ∀r ∈
{
R,D,A

}
, where Q is a matrix

with the common eigenvectors for all modes.
Finally, we compute the estimates of the spatial frequencies

µ̂r,ℓ by taking the arguments of the estimated eigenvalues, i.e.,
µ̂r,ℓ = arg

(
λr,ℓ

)
, ∀r ∈

{
R,D,A

}
, ∀ℓ ∈

{
1, .., L

}
.

A. Complexity Analysis

The computational complexity of the proposed algorithm

is summarized in Table 1. Here, Msub =
∏{R,D,A}

r=1 Msub,r

is the total number of effective sensors and 2Nsub is the the
resulting number of snapshots after applying spatial smoothing
and forward-backward averaging across all three dimensions.
The number of targets to estimate is denotes as L.

Operation Complexity

Beamspace Transformation O
{
2NsubMsub log2

(
Msub

)}
Signal subspace estimation O

{
4MsubN

2
sub

}
Shift-invariance equation O

{
MsubL

2
}

Frequency Estimation & Pairing O
{
3L3

}
Table 1: Complexity Analysis

IV. SIMULATION RESULTS

In this section, we present selected simulation results to
demonstrate the performance of the proposed algorithm.

We compare the proposed method with the conventional
FFT-based method for parameter estimation [1]. It selects L
beams with the highest magnitudes in one dimension at a time.

For the simulation setup, we consider the following system
configuration. Each chirp pulse consists of MR = 64 samples
for range estimation, and the pulse train contains MD = 32
pulses. The receiver antenna array is equipped with MA = 16
antennas. The signal chirp is generated using the expression
given in (1). For the preprocessing stage of the ESPRIT-
type algorithm, we apply spatial smoothing, forward-backward
averaging, and a full-size DFT beamspace transformation. We
assume the received signal is corrupted by an Additive Zero-
Mean Circularly Symmetrical Complex Gaussian (ZMCSCG)
noise with variance σ2

n. The signal-to-noise-ratio (SNR) is
defined as SNR = 10 log

∑L
ℓ α2

ℓ

σ2
n

, where αℓ represents the
intensity of the ℓ-th target. All simulation results presented
in Figure 1 are obtained through Monte Carlo trials, where
each point is averaged over 1, 000 realizations of ZMCSCG
noise.

In the simulation results, 3-D ESPRIT in DFT beamspace
is labeled as (SBE), with additional information about the
configuration for smoothing in parentheses. The FFT-based
approach is denoted as (DFT), where the coefficient in the
parentheses after the label specifies the oversampling factor.

For comparison purposes, we also include the deterministic
Cramér-Rao Lower Bound (CRLB) for (6) in the figures with
the other simulation results. It is depicted as a black dashed
line with the label (Det CRLB) and is calculated similarly to
the approach described in [21].

To make the comparison of simulation results across dif-
ferent modes consistent, we measure the performance of each
algorithm using the Root Mean Squared Error (RMSE) of the
corresponding angular frequencies in each mode. The RMSE
for the r-th mode is given by the expression

RMSEr =

√√√√E

{
1

L

L∑
ℓ=1

(
µ̂r,ℓ − µr,ℓ

)2}
,∀r ∈

{
R,D,A

}
. (16)

The main parameters of the simulated environment, such as
range, velocity, azimuth, and intensity, are listed in Table 2.

Target Rℓ, [m] vℓ, [m/ s] θℓ, [
◦] αℓ

1 5 3 50 1
2 12 −10 20 0.85
3 20 27 −20 0.7
4 15 35 5 0.5

Table 2: Simulation parameters

Figure 1(a) shows the total RMSE across all dimensions.
We can observe that the error for SBE continues to decrease
as the SNR increases, while the DFT method reaches a plateau
beyond a certain SNR level due to its inherent resolution limit.
Furthermore, it can be observed that different configurations
of smoothing result in varying estimation accuracy. The con-
figuration with Nsub = { 17× 9× 5 } subarrays leads to
the best performance, especially for the low SNR range. This
indicates a trade-off between the effective aperture size after
smoothing and the resulting number of available snapshots.
The underlying mechanism behind this trade-off can be further
investigated through an analytical assessment of the algorithm
in future work. Figures 1(b), 1(c), and 1(d) present the
RMSE versus SNR for each dimension individually. It can be
observed in Figure 1(d) that the DFT method outperforms SBE
in a certain SNR range, which happens due to the usage of
a specific implementation and its sequential processing across
dimensions, which progressively reduces the search space and
accumulates additional gain for the remaining dimensions.

In general, based on the presented simulation results, we
can confirm the ability of the proposed algorithm to provide
high-resolution estimates of target parameters with accuracy
exceeding the Rayleigh resolution limit.

V. CONCLUSIONS

In this paper, we present a gridless 3-D parameter estimation
method for FMCW automotive radar systems based on the
framework of 3-D ESPRIT in DFT beamspace. The proposed
algorithm enables the simultaneous estimation of target pa-
rameters, including azimuth, speed, and range, while ensuring
automatic pairing of parameters across different modes. Simu-
lation results confirm the capability of the proposed algorithm
to achieve high-resolution estimates of target parameters. For
future work, the approach can be extended to MIMO radar
systems and combined with reduced-dimensional processing
to decrease the computational complexity.
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(a) Total RMSE versus SNR for all dimensions. (b) RMSER versus SNR for the range dimension.

(c) RMSED versus SNR for the Doppler dimension. (d) RMSEA versus SNR for the azimuth dimension.

Figure 1: Simulation results for Automotive radar based on 3-D ESPRIT in DFT beamspace.
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