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Abstract—Detecting vulnerable road users (VRUs), such as
pedestrians, is crucial in automotive applications. Radar systems,
with their ability to capture micro-Doppler signatures, are par-
ticularly well suited for this task. To evaluate their performance
in complex scenarios and edge cases, realistic simulation tools
are indispensable. In this paper, we introduce a method for
realistically simulating radar raw data of moving pedestrians in
arbitrary scenarios. For synthesizing the digital pedestrian, we
captured the human gait with a state-of-the-art motion capture
system. The extracted gait data was then used to animate a virtual
human based on the SMPL-X model. Leveraging a digital radar
twin, we generated matching synthetic radar raw data of the
measurement scenario. Through the analysis and comparison of
both measured and simulated data, the accuracy of the proposed
simulation approach is validated. The simulation proved to be
a powerful framework for designing and testing radar systems
and VRU classification algorithms, ensuring reliable operation in
complex real-world environments.

Index Terms—Automotive radar, simulation, micro-Doppler,
digital-twin, pedestrian.

I. INTRODUCTION

The detection and classification of vulnerable road users
(VRUs) is one of the most critical tasks in automotive percep-
tion. Radar sensors are particularly well suited for this task due
to their ability to measure Doppler shifts — and consequently,
the velocity of surrounding objects — while remaining robust
against adverse environmental conditions such as poor weather
and low lighting [1]. Many recent signal processing algorithms
for VRU detection, such as [2] and [3], leverage neural
networks. These approaches require diverse datasets, which
are challenging to collect and must be regenerated for each
different radar sensor. The authors of [3] demonstrated that
their neural network, trained on automatically labeled data,
outperformed one trained on manually labeled data due to the
increased dataset size, despite imperfections in the automatic
labeling process. Training and validating algorithms in edge-
case scenarios pose significant challenges. Most real-world
measurement datasets rarely contain such critical instances,
as they would endanger the life of test subjects. This includes
sudden street crossings or vehicles reversing into pedestrians.
Such scenarios can only be replicated with dummies, which
do not serve as realistic radar targets.
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Fig. 1: The radar signature of a walking pedestrian is recorded
while the motion is tracked using an optical motion capture
system. A digital twin of the setup is then used to simulate
radar raw data based on the motion capture data. Both simu-
lated and real-world data are processed using the same signal
processing chain to enable a fair comparison.

To address this challenge, we propose generating these
datasets through a sophisticated simulation pipeline. This
approach enables the creation of realistic, inherently labeled
radar data. However, to establish the validity of the simulation,
an in-depth analysis is required, with particular emphasis
on the micro-Doppler components of pedestrian motion. To
validate our simulation approach, we followed the procedure
outlined in Fig. 1. We recorded a walking pedestrian using
a typical automotive radar while simultaneously capturing
the biomechanical model with a marker-based optical motion
tracking system (Sec. II). This motion data was then used to
animate a virtual human body hull placed into a 3D model of
the measured laboratory. Further details on the simulation en-
vironment and the digital radar twin used to generate the radar
raw data are provided in Sec. III. Subsequently, both signals
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Fig. 2: Measurement environment: The pedestrian, wearing a
motion capture suit with optical markers, follows a trajectory
(green) radially toward the radar (red). Mounted next to the
radar on the tripod is a camera for visual reference and a
LiDAR, which remained turned off during the measurement.

are processed using the same pipeline presented in Sec.IV,
ensuring a fair comparison. The quality of the simulation is
then analyzed and compared to the measurement in Sec. V.
Finally, Sec. VI presents conclusions and future perspectives
on generating synthetic datasets for VRU detection.

II. MEASUREMENT ENVIRONMENT

To evaluate the simulation’s capabilities, the quality of the
recorded data is of paramount importance. A perfectly matched
digital twin is essential for identifying residual artifacts in
the simulation and determining whether it can be reliably
used to generate artificial datasets. Thus, we conducted a
high quality reference measurement campaign for recording
the radar raw data, as depicted in Fig. 2. The pedestrian
walked approximately 4 meters toward the radar (red) while
being tracked by motion capture cameras (blue) before turning
around. This trajectory was repeated twice, resulting in a
measurement duration of approximately 12s. Since this study
focuses on analyzing direct human reflections, the radar was
surrounded by absorbing material to mitigate interference from
multipath effects in the measurements.

A. FMCW-MIMO Radar

Raw data acquisition was performed using the Texas Instru-
ments IWR6843ISK radar, mounted on a tripod (cf. Fig. 1).
The radar is configured as a frequency-modulated continuous
wave (FMCW) chirp sequence radar with the parameters in
Tab. 1. Although the radar features three transmitting (TX)
and four receiving (RX) antennas, only two TX antennas in a
time division multiplex (TDM) scheme and one RX antenna
were used, since solely micro-Doppler components were in-
vestigated. The radar raw data was streamed via a custom
Robot Operating System (ROS) interface, with a timestamp
assigned to each frame. Additionally, the radar’s outer casing
was tagged with optical markers to precisely determine its
position within the optical motion capture coordinate system.

TABLE I: Radar Parameters

Parameter [ Value
Carrier frequency 60 GHz
Bandwidth 716.86 MHz
Number of chirps per TX antenna 140
Measurement duration 27.5ms
Velocity resolution 0.091ms™ !
Maximum unambiguous velocity 6.36ms !
Range resolution 0.21m
Maximum unambiguous range 26.78 m
Frame rate 20Hz

B. Optical Motion Tracking

Optical motion tracking systems are the gold standard for
capturing complex motions, such as human gait. In this work,
we used an optical motion tracking system from OptiTrack' to
record the biomechanical movement of a walking pedestrian.
The room is equipped with 12 infrared cameras (blue) evenly
spaced throughout the laboratory to ensure full coverage of the
pedestrian’s trajectory (green) toward the radar and back. The
pedestrian was wearing a motion capture suit fitted with 37 op-
tical markers, distributed across the body to accurately capture
limb movements. The tracking data was recorded at a frame
rate of 120 Hz, ensuring precise tracking of even subtle micro-
motions. While the optical motion tracking cameras capture
data synchronously, the radar and visual camera were recorded
separately and therefore required additional synchronization.
To achieve this, the tracking data was also streamed to the
same recording device as the radar data via a ROS interface,
ensuring a unified timestamp for all recorded measurements.

III. SIMULATION ENVIRONMENT

To recreate the measurement scenario, we require a dig-
itized human model and a virtual 3D representation of the
measurement environment to accurately capture the real-world
reflection behavior of electromagnetic wave propagation. The
human model is generated based on the SMPL-X model
[4], with parameters and mesh shape carefully selected to
closely match the pedestrian’s real physiology. The virtual
human was then animated using kinematic data extracted
from optical motion capture, processed in Blender. Since
the walking pedestrian is already spatially and temporally
aligned with the radar, the 3D virtual environment of the
laboratory is transformed to share the same coordinate origin
and orientation as the motion capture system. An example
of a rendered frame depicting the walking pedestrian in
the laboratory is shown in Fig. 3. Radar simulations were
conducted using an advanced physical-optics (PO)-based ray-
tracing approach developed by fiveD?, which was adapted
from [5]-[7]. Since the focus of this paper is only on the
micro-Doppler components, the digital twin of the real-world
radar is replicated utilizing one receiving and two transmitting
antennas to match the time division multiplex scheme of the

I'NaturalPoint, Corvallis, USA, https://optitrack.com/
2fiveD GmbH, Erlangen, Germany, https://fived.ai/
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Fig. 3: Virtual environment: Digital twin of the pedestrian
inside the laboratory, with the radar mounted on a tripod. The
coordinate system of the motion capture data and the virtual
environment are aligned, ensuring that the trajectory and radar
position accurately replicate the real-world scenario.

real-world radar. Although the simulator features sophisticated
electromagnetic material models, the objects within this study
were modeled as perfectly electrically conductive. While this
provides a reasonable approximation for the specular reflection
behavior of human skin at millimeter-wave frequencies [8],
it does not fully capture the actual materials present in the
laboratory. However, given that static targets are filtered out
during signal processing, this simplification only has a minor
effect on the micro-Doppler components of the simulated
pedestrian. A comprehensive matching of real-world material
properties in the simulation lies beyond the scope of this
work. Thus, future studies have to place a special emphasis
on capturing and evaluating the reflectance behavior of the
pedestrian, due to its critical role in realistic radar target
modeling of vulnerable road users.

IV. SIGNAL PROCESSING

As a first step, the measured radar raw data is used to
obtain a rough power estimate of the radar’s noise floor.
Since the simulation is conducted without noise, this estimate
is then added to the simulated radar raw data as Gaussian
noise before transforming both time-domain signals into range
domain using a fast Fourier transform (FFT). Next, static
targets are suppressed by subtracting the mean in the slow-
time dimension, followed by a Doppler FFT. The overall
signal processing chain is summarized in Fig. 4. Because the
laboratory’s back walls act as dihedral reflectors, both the
measured and simulated range-Doppler frames are cropped
in range to exclude resulting multipath and double-bounce
effects. The processed range-Doppler frames are then stored
for later evaluation. Additionally, each range-Doppler frame
is reduced to a single slice by computing the maximum
Doppler value over range. Accumulating these slices over time
produces a Doppler-time spectrogram (DTS), which visualizes
velocity components over time — a powerful tool for analyzing
the pedestrian’s movement sequence. To ensure a fair compar-
ison, the absolute power of both measured and simulated data
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Fig. 4: Signal processing chain for measured and simulated
radar data. Range-Doppler maps are computed via Fast Fourier
Transform (FFT) and accumulated into a Doppler-time spec-
trogram (DTS), both serving as key aspects of the comparison.

is normalized to 0 dB, as the transmit power of the simulation
has not been matched to its real-world counterpart.

V. COMPARISON OF RESULTS
A. Range-Doppler Map

A subset of the measured and generated range-Doppler
frames, along with the corresponding camera images, is de-
picted in Fig. 5. In the first row (Fig. 5a-c), the pedestrian is
walking away from the radar, resulting in primarily positive
velocity components. Additional components with a negative
Doppler shift are visible in both the measurement and the
simulation. These originate from the back swinging arm of
the pedestrian, which is further analyzed in Sec. V-B. The
peaks in the measured and simulated range-Doppler maps
align almost perfectly, with only a slight mismatch in am-
plitude distribution. In the middle row (Fig. 5d-f), another
measurement of the walking cycle is shown. Compared to
Fig. 5a, in this case, both feet are stationary, thus resulting
in a more compact Doppler spread, as the legs are the fastest-
moving components in human gait. Also, one noticeable effect
in the center and the upper frame is that the amplitudes of
the simulated micro-Doppler components seem to be slightly
smeared along the Doppler dimension, when compared to
the measurement. This discrepancy may be attributed to the
pure metallic material model used for the digital human,
which does not fully capture real-world reflection behavior
and will be investigated further in future work. Since changes
in movement are particularly important when analyzing edge-
case scenarios, the bottom row (Fig. 5g-i) depicts the turning
point of the trajectory. All reflection points are centered around
the zero Doppler-bin, as the pedestrian performs a 180-degree
rotation, leading to a stationary torso. The symmetric shape
results from the swinging limbs, where one limb moves toward
the radar while the other moves away with nearly the same
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Fig. 5: Selected range-Doppler frames of a walking pedestrian.
Reference camera images are shown in the left column (a, d,
g), the corresponding measured range-Doppler maps in the
center column (b, e, h), and the matching simulated range-
Doppler maps in the right column (c, f, i).

Range [m]

velocity. Although minor differences in reflection points can
be observed, the overall relative amplitudes and reflection
positions match remarkably well.

B. Doppler-Time Spectrogram

The Doppler-time spectrogram of the measured and simu-
lated data are compared in Fig. 6. For further analysis, the
marker data from the motion capture system, corresponding
to the torso, feet and hands, is shown in Fig. 6c. Since the
measurement started in a static pose (as seen in Fig. 2), no
velocity components are initially visible in any of the three
plots. Once the pedestrian begins walking at approximately
16.2s, the Doppler components of different body parts start
to spread due to their varying radial velocities relative to the
radar. These components are clearly distinguishable. The walk-
ing distance in the laboratory was limited to approximately
4m, resulting in the recording of about five foot steps that are

clearly visible due to their high radial velocity. After walking
toward the radar, the pedestrian turned around and walked back
to the starting point, effectively repeating the measurement.
A single foot step can be clearly observed between from
18.0s to 18.5s. During this phase, the torso moves with an
almost constant velocity, serving as the strongest reflection
point due to its higher radar cross-section. At the starting
point, both feet (marked in red and green) are on the ground
while the arms are extended. Immediately after, the hands
begin moving in opposite directions: the right hand (green)
exhibits a positive velocity relative to the torso, while the left
hand (violet) exhibits a negative velocity. Whereas the left
foot (orange) remains on the ground, the right foot begins
its swing, producing a high negative velocity component,
which is clearly visible in the DTS. Due to the periodic
nature of human walking, this cycle repeats with left and
right limbs interchanged. Although not immediately identifi-
able without motion capture reference data, the pedestrian’s
hands are visible in the spectrogram, sometimes even causing
negated Doppler components, such as at 24.2 s. One noticeable
difference between the measured and simulated DTS is the
smearing effect, also observed in Fig. 5f. For example, during
the walk from 22s to 26 s, the measured DTS shows discrete
scattering centers along the Doppler dimension, leading to
velocity components with amplitudes near the noise floor.
In contrast, the simulated DTS exhibits a broader spread of
velocity components, distinguishable above the noise floor.
Despite these minor differences, the relative amplitudes in
the measured and simulated data match remarkably well. By
leveraging the ray-tracing approach used in the simulation,
the information stored in the rays can be further utilized to
differentiate between components. This presents a powerful
tool for advanced radar data analysis, paving the way for the
development of next-generation signal processing algorithms.

VI. CONCLUSION

In this work, we recorded the radar signature of a walking
pedestrian and simultaneously captured its movement using
a high-precision optical motion tracking system. The ex-
tracted skeletal motion was used to animate a human body
mesh model, enabling the creation of an almost identical
replica of the real-world measurement scenario, along with
a virtual representation of the radar. Using this digital twin,
we simulated radar raw data with a ray-tracing-based radar
simulation tool. Both the measured and simulated radar data
were processed through the same processing chain, and the
resulting range-Doppler maps and Doppler-time spectrograms
were analyzed. Our findings demonstrate that the simulated
data closely matches the real-world reference, confirming
the feasibility of realistic radar simulations for pedestrian
detection in automotive applications. For future work, we plan
to further investigate the amplitude distribution of targets to
enhance the similarity between measurement and simulation.
Based on these findings, the virtual environment can be
leveraged to simulate edge-case scenarios that are challenging
or impossible to capture in real-world measurements due to
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Fig. 6: Visual comparison between measured Doppler-time spectrogram (a) and simulated Doppler-time spectrogram (b). For
reference, the velocities of the recorded optical marker data with respect to the radar are depicted in (c).

physical and ethical constraints. Furthermore, radar parameters
and configurations can be optimized in the virtual environment
to minimize costs and accelerate workflows. The simulated
pedestrians can be generated from existing human motion
capture datasets, such as [9] or entirely virtual motion models
can be used to create synthetic radar datasets. Ultimately,
these virtual datasets can be used to train and test algorithms,
contributing to the advancement of VRU safety in autonomous
systems.

REFERENCES

[1] J. Hasch et al., "Millimeter-Wave Technology for Automotive Radar
Sensors in the 77 GHz Frequency Band,” in IEEE Transactions on
Microwave Theory and Techniques, vol. 60, no. 3, pp. 845-860, March
2012, doi: 10.1109/TMTT.2011.2178427.

[2] R. Pérez, F. Schubert, R. Rasshofer and E. Biebl, “Single-Frame
Vulnerable Road Users Classification with a 77 GHz FMCW Radar
Sensor and a Convolutional Neural Network,” 2018 19th Interna-
tional Radar Symposium (IRS), Bonn, Germany, 2018, pp. 1-10, doi:
10.23919/IRS.2018.844812 6.

[3] M. Dimitrievski, I. Shopovska, D. V. Hamme, P. Veelaert and W. Philips,
”Weakly Supervised Deep Learning Method for Vulnerable Road User
Detection in FMCW Radar,” 2020 IEEE 23rd International Conference

1396

[4]

[5]

[6]

[7]

[8]

[9]

on Intelligent Transportation Systems (ITSC), Rhodes, Greece, 2020,
pp- 1-8, doi: 10.1109/ITSC45102.2020.9294399.

G. Pavlakos et al., "Expressive Body Capture: 3D Hands, Face, and
Body From a Single Image,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019,
pp- 10967-10977, doi: 10.1109/CVPR.2019.01123.

C. Schiiler, M. Hoffmann, J. Briunig, I. Ullmann, R. Ebelt and
M. Vossiek, ”A Realistic Radar Ray Tracing Simulator for Large
MIMO-Arrays in Automotive Environments,” in IEEE Journal of Mi-
crowaves, vol. 1, no. 4, pp. 962-974, Oct. 2021, doi: 10.1109/Radar-
Conf2351548.2023.10149641.

C. Schiifiler et al., ”Achieving Efficient and Realistic Full-Radar Sim-
ulations and Automatic Data Annotation by Exploiting Ray Meta
Data from a Radar Ray Tracing Simulator,” 2023 IEEE Radar Con-
ference (RadarConf23), San Antonio, TX, USA, 2023, pp. 1-6, doi:
10.1109/RadarConf2351548.2023.

C. Schuessler, M. Hoffmann and M. Vossiek, ”Super-Resolution Radar
Imaging With Sparse Arrays Using a Deep Neural Network Trained
With Enhanced Virtual Data,” in IEEE Journal of Microwaves, vol. 3,
no. 3, pp. 980-993, July 2023, doi: 10.1109/JMW.2023.3285610.

S. S. Ahmed, ”Microwave Imaging in Security — Two Decades of
Innovation,” in IEEE Journal of Microwaves, vol. 1, no. 1, pp. 191-201,
Jan. 2021, doi: 10.1109/IMW.2020.3035790.

N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black,
‘AMASS: Archive of Motion Capture as Surface Shapes’, arXiv [cs.CV].
2019.



