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Abstract—Digital modulation schemes such as phase-
modulated continuous wave (PMCW) have recently attracted
increasing attention as possible replacements for frequency-
modulated continuous wave (FMCW) modulation in future auto-
motive radar systems. A significant obstacle to their widespread
adoption is the expensive and power-consuming analog-to-digital
converters (ADCs) required at gigahertz frequencies. To mitigate
these challenges, employing low-resolution ADCs, such as one-bit,
has been suggested. Nonetheless, using one-bit sampling results in
the loss of essential information. This study explores two range-
Doppler (RD) imaging methods in PMCW radar systems utilizing
neural networks (NNs). The first method merges standard RD
signal processing with a generative adversarial network (GAN),
whereas the second method uses an end-to-end (E2E) strategy
in which traditional signal processing is substituted with an NN-
based RD module. The findings indicate that these methods can
substantially improve the probability of detecting targets in the
range-Doppler domain.

Index Terms—Analog-digital-conversion, one-bit sampling,
phase-modulated continuous wave, quantization, range-Doppler
processing

I. INTRODUCTION

Digital modulation schemes, such as phase-modulated con-
tinuous wave (PMCW), have recently attracted attention due to
their robustness against mutual interference and their inherent
multiplexing capability, which is essential for multiple-input
multiple-output (MIMO) systems [1]. However, PMCW and
other digital modulation schemes require fast-sampling analog-
to-digital converters (ADCs) to process the entire baseband,
reaching up to 1GHz at 77GHz and 4GHz at 79GHz.
These high-sampling ADCs are power-consuming and gener-
ate significantly larger data volumes than frequency-modulated
continuous wave (FMCW) radar systems, which only need to
sample a narrowband beat signal [2]. To address this issue,
with a focus on waveform design and signal processing,
stepped frequency solutions have been proposed for PMCW
[3], providing a tradeoff between performance and hardware

requirements. The carrier frequency changes linearly over time
to reduce the bandwidth of each pulse, which in turn lowers
the ADC sampling requirements. An alternative approach to
reducing sampling rates involves lowering the resolution of the
ADCs [4] and, for example, employing them in mixed-ADC
setups, as shown in [5]. Low-resolution ADCs, e.g., one-bit
ADCs, could be a promising solution to reduce the amount
of data, power consumption, and costs. However, amplitude
information is lost by one-bit sampling, which provides crucial
information for target detection. In [6], the authors focused on
designing the transmit code and receive filter in the presence
of one-bit sampling.

This study investigates the effectiveness of neural network
(NN)-based methods, specifically end-to-end (E2E) and hybrid
approaches, to improve target detectability when applying one-
bit quantization. Our contributions include the development
of an E2E approach for range-Doppler (RD) map generation
based on high-resolution and one-bit quantized ADC data
and the introduction of a denoising network to mitigate
noise introduced by quantization. Furthermore, we propose
a hybrid approach combining conventional RD processing
with a denoising network. Finally, we provide a comparative
performance evaluation of the E2E and hybrid approaches,
highlighting their advantages.

II. SIGNAL MODEL

Let x = [x0, . . . , xN−1] = exp(ȷϕ) with ϕ ∈ {0, π}N
represent a pseudo-noise (PN) binary sequence of length N ,
where xn ∈ {−1, 1} is denoted as a chip. The transmitted and
received signals in their equivalent complex baseband (ECB)
representation can be expressed by xBB and yBB, respectively,

xBB(t) =

N−1∑
n=0

xnrect

(
t− (n+ 0.5)T

T

)
, (1)
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and

yBB(t) =

K−1∑
k=0

γk xBB

(
t− τk(t)

)
exp

(
−ȷ2πfcτk(t)

)
, (2)

where T is the chip duration, rect(·) denotes the rectangular
function, K is the number of point targets, γk is the scaling
factor of the kth target reflection, including free-space atten-
uation, radar cross-section (RCS), and the reflection phase,
τk(t) is the round-trip delay, and fc is the carrier frequency.
The round-trip delay can be expressed by τk(t) = 2r0,k/c0 +
2vr,kt/c0, where r0,k is the range between the radar and the
kth target at the beginning of the coherent processing interval
(CPI), vr,k is the relative velocity, and c0 is the light speed.
In addition, it is assumed that M sequences with sequence
duration Tseq are transmitted in a single CPI, and yBB(t) is
sampled with a rate of 1/T at time steps ts = nT + mTseq

with 0 ≤ n < N, 0 ≤ m < M , resulting in the two-
dimensional matrix representation of the sampled baseband
signal expressed by Y = yBB(ts) ∈ CN×M .

Further, it is assumed that the output of the ADCs can
be either high-resolution or one-bit. The output of the ADCs
after one-bit quantization can be expressed by Ỹ = Q(Y) =
sign

(
ℜ(Y)

)
+ȷ sign

(
ℑ(Y)

)
, where Q(·) denotes the complex

quantization operator, sign(x) is the sign function, and ℜ(·)
and ℑ(·) denote the real and imaginary parts, respectively. We
define that sign(x) = 1 for x ≥ 0, otherwise sign(x) = −1.

To retrieve the range and Doppler information from the
baseband signal, we first apply cross-correlation along the fast-
time domain of Y as follows,

prm =

N−1∑
n=0

x∗
mod (n−r,N)ynm, (3)

where (ynm) is the (r,m)th element in Y, P = (prm) ∈
CN×M is the range profile, r denotes the range bin index, (·)∗
is the complex conjugate, and mod (·) is the modulo operator.
Subsequently, the relative velocities (i.e., Doppler shifts) can
be extracted by applying discrete Fourier transforms (DFTs)
along the slow-time domain, resulting in the RD map Q =
(qrv) ∈ CN×M . The (r, v)th element can be expressed by

qrv =
M−1∑
m=0

prm exp
(
−ȷ2πv

m

M

)
. (4)

Note that by replacing Y with Ỹ = (ỹnm) in (3), R̃ and S̃
can be calculated similarly without losing generality.

III. RANGE-DOPPLER NEURAL NETWORKS

This work presents two NN-based approaches for generat-
ing and denoising RD maps from 1-bit ADC data: an E2E
approach and a hybrid approach. Both networks are adversar-
ially trained within a generative adversarial network (GAN)
framework. The E2E method integrates convolutional neural
networks (CNNs) [7], residual neural networks (ResNets)
[8], and frequency domain operations. The hybrid approach
combines conventional signal processing techniques with a
denoising NN to improve performance.

1-bit
ADC data
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RD map
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Fig. 1. Overall neural network architecture for range-Doppler map generation
and denoising based on 1-bit ADC data.

A. Network Architecture

In our GAN framework (Fig. 1), the generator processes
1-bit ADC data to reconstruct high-quality RD maps, while
the discriminator, implemented as a PatchGAN, assesses their
authenticity by comparing them to high-resolution (HR) RD
maps from a full-precision ADC. The HR RD map serves as
a reference, enabling the discriminator to refine the generator
iteratively by providing authenticity feedback, thereby improv-
ing the fidelity of the generated outputs.

In the E2E approach, all generator layers are trainable. In
contrast, in the hybrid approach, the initial layers are replaced
with classical RD processing, as described in (3) and (4),
while the remaining layers, i.e., the backbone network, focus
on noise reduction.

B. Generator in E2E Approach

To design the generator in the E2E approach, we adopt the
idea from [9] and integrate a similar learnable signal process-
ing layer into the backbone network, which is the Pix2Pix
generator from [10], as illustrated in Fig. 2. This modified
Pix2Pix generator is responsible for both RD processing and
noise reduction to reconstruct high-quality RD maps.

The learnable signal processing layer in [9] was originally
designed for FMCW radar, where range estimation is per-
formed through DFT. However, in PMCW radar, the range
profile is obtained by correlation, as described in (3). To
accommodate this difference, we replace the DFT-based range
estimation with a frequency-domain correlation operation.
Specifically, we employ a fixed-length, trainable PN sequence
as the correlation kernel, which is optimized during training
to improve the correlation response to target echoes, thereby
improving the accuracy of the range profile. Unlike the hybrid
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TABLE I
GENERATOR ARCHITECTURE AND ITS COMPONENTS FUNCTIONS.

Component Layer Type Main Function

RD processing Correlations + DFTs Extracts range and
Doppler information

Initial Conv 3× 3 Conv + ReLU Feature extraction
Encoder 4 × 4 Conv + batch nor-

malization (BN) + ReLU +
residual block (×4)

Downsampling and fea-
ture enhancement

Residual block 3× 3 Conv + BN + ReLU
+ skip connection

Mitigates vanishing gra-
dient and enables deeper
network training

Bottleneck 3 residual blocks Deep feature transforma-
tion

Decoder 4 × 4 transposed Conv +
BN + ReLU + residual
block (×4)

Upsampling path for re-
construction

Global residual 1× 1 Conv Directly connects input
to output

Final output 3× 3 Conv + Tanh Generates final RD map

approach, where the PN sequence is predefined and fixed
a priori, the E2E approach enables data-driven learning of
the PN sequence. Additionally, analogous to (4), Doppler
processing is implicitly learned within the network since both
the Doppler window and the complex DFT kernel are trainable
parameters. These modifications improve both accuracy and
robustness in the RD processing.

The Pix2Pix generator, originally based on a U-Net [11]
architecture, employs skip connections to transfer low-level
spatial information from the encoder to the decoder. How-
ever, applying Pix2Pix directly to 1-bit ADC data leads to
training instability and suboptimal reconstruction, as radar
signals exhibit characteristics distinct from natural images.
To mitigate these issues, we introduce three key modifica-
tions. First, the network depth is increased with a bottleneck
layer to enhance feature extraction and stabilize training,
improving gradient flow and preventing vanishing gradients.
Second, residual learning is incorporated, where, instead of
relying solely on U-Net’s skip connections, multiple residual
blocks [8] are integrated within both the encoder and decoder,
improving gradient propagation and ensuring stable training.
Third, a global residual connection is introduced using a
1 × 1 convolution (Conv), directly linking the input to the
output to preserve low-frequency components in the final RD
map. These enhancements improve stability, robustness, and
accuracy, enabling effective training on 1-bit ADC data and
high-fidelity RD map reconstruction. For the simulations in
Sec. IV, a learning rate of 2 · 10−4 is employed.

C. Discriminator

The discriminator distinguishes between reference, specif-
ically HR, and generated RD maps, providing adversarial
feedback to the generator and motivating it to produce more
authentic output. The design utilizes a PatchGAN discrimi-
nator [10], focusing on classifying localized regions instead
of whole images. This approach enables the discriminator
to discern intricate details. The components of the discrim-

TABLE II
DISCRIMINATOR ARCHITECTURE AND ITS COMPONENTS FUNCTIONS.

Component Layer Type Main Function

Input Concatenation of RD
map pairs

Distinguish real vs.
generated data

Downsampling 3 × (4 × 4 Conv +
Leaky ReLU)

Hierarchical feature ex-
traction

Fully Connected 1 4 × 4 Conv + Leaky
ReLU

Compresses feature
representation

Fully Connected 2 4× 4 Conv + Sigmoid Outputs authenticity
score

inator are outlined as follows. Firstly, feature extraction is
performed using three 4 × 4 Conv layers with a stride of 2
for downsampling. Each layer is succeeded by Leaky rectified
linear unit (ReLU) activation to derive hierarchical features
from the input data. Secondly, PatchGAN employs a patch-
based discrimination approach that evaluates smaller sections
rather than making an overarching decision on the full RD
map, thereby improving the retention of detailed features. In
the third and last discriminative stage, the concluding pair of
layers utilizes fully connected Convs to generate a singular
scalar output representing the probability of an authentic input
RD map. For the simulations in Sec. IV, a learning rate of
1 · 10−4 is employed.

Using a PatchGAN enhances the ability of the discriminator
to help the generator preserve intricate structural information,
thereby improving the reconstruction performance. The struc-
ture of the discriminator network is outlined in Table II.

D. Loss Functions and Training Strategy

Different loss functions guide the training of the generator
and discriminator to ensure stable adversarial learning and
high-quality reconstruction.

1) Generator Loss: The loss function of the generator
mainly comprises three key components, which are as fol-
lows. Firstly, the L1 loss denoted as LL1, which measures
the absolute difference between the generated RD map and
the HR RD map, ensuring structural consistency. Secondly,
the structural similarity index (SSIM) loss [12], denoted as
LSSIM, encourages perceptual similarity by preserving struc-
tural information. Thirdly, the adversarial loss [13] denoted
as LGAN, which assigns an authenticity score to the gener-
ated RD map. This loss function ensures that the generator
learns to produce RD maps indistinguishable from real data
by maximizing the output of the discriminator, thus fooling
the discriminator into classifying the generated samples as
real. The total loss of the discriminator is formulated as
LG = λL1LL1 + λSSIMLSSIM + LGAN. The hyperparameters
λL1 and λSSIM were set to reasonable values within the range
of 1 to 50, and minor variations did not significantly affect the
final results.

2) Discriminator Loss: As proposed in [13], the discrimina-
tor is trained using the Wasserstein loss with gradient penalty,
mainly comprising two components. Firstly, the Wasserstein
distance, denoted as LW, measures the discrepancy between
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Bottleneck

Global residual

skip

Fig. 2. Structure of the proposed generator network. The functionalities of the blocks are outlined in Table I.

the distributions of real and generated samples. Secondly, a
gradient penalty (GP) loss, denoted as LGP, enforces the
Lipschitz constraint and regularizes the discriminator gradient
norm to prevent vanishing or exploding gradients. The total
loss of the discriminator is formulated as LD = −LW +
λGPLGP. The gradient penalty weight is chosen as λGP = 10,
according to the configuration described in [13].

IV. RESULTS

A. Data Set

To train and evaluate the models, a synthetic data set is
generated using the PMCW signal model described in Sec-
tion II. The data set contains 6000 two-dimensional matrices,
including 1-bit ADC data and HR RD maps utilized as ground
truth (GT). The HR RD maps are derived from unquantized
ADC data. Moreover, the dataset is divided such that 80%
serves as training data, while 20% is used for validation. The
signal processing takes 1-bit ADC data as input, consisting
of 3000 matrices divided into 1500 matrices with a signal-to-
noise ratio (SNR) of 10 dB and 1500 matrices with an SNR of
20 dB. For each input matrix, we generate 3000 HR RD maps
from full-resolution ADC data with an SNR of 50 dB. These
HR RD maps serve as a reference to supervise model training.
The Adam optimizer is utilized for the training, configured
with the parameters β1 = 0.5 and β2 = 0.999 and the global
batch size is set to 16.

The data set is generated using a simulated single-input
single-output (SISO) 79GHz automotive radar employing a
maximum length sequence (MLS) of length 127. An additional
chip is added to each sequence to improve the usability of
NNs, resulting in a total length of N = 128. The chip duration
and bandwidth are 10 ns and 100MHz, respectively, with
a total of 10240 pulses transmitted. To improve the SNR,
we apply the accumulation approach described in [14]. By
accumulating each set of 20 pulses to generate a range profile,
the total number of slow-time samples is reduced to M = 512.

B. Metrics

Performance is assessed using the following metrics. First,
the mean squared error (MSE) evaluates the differences be-
tween each cell of the 1-bit ADC data and the original HR RD
maps, which are denoted by Q1b =

(
q1brv

)
and QHR =

(
qHR
rv

)
,

respectively, as expressed by

MSE
(
Q1b,QHR

)
=

1

NM

M−1∑
v=0

N−1∑
r=0

( ∣∣q1brv ∣∣− ∣∣qHR
rv

∣∣ )2

, (5)

TABLE III
COMPARISON OF EVALUATION METRICS IN VALIDATION SCENARIO.

Method MSE PSL (dB) ISL (dB)

HR ADC + RD 0 -16.1 -5.3
1-bit ADC + RD 4.74e−4 -18.2 -4.6
1-bit ADC + RD + Denoise-NN 8.00e−6 -13.5 -5.6
1-bit ADC + (RD+Denoise)-NN 1.00e−5 -15.5 -4.7

where a lower MSE indicates better reconstruction quality.
Second, the peak-sidelobe level (PSL) measures the maximum
sidelobe level expressed by

PSLv(Q) = 20 log10

(
max
r ̸=r̂

|qrv|
)
, (6)

where v is the target Doppler index in RD, and r̂ is the
range index of the main lobe peak. Lower PSL indicates better
sidelobe suppression and, hence, better target detectability.
Third, the integrated sidelobe level (ISL) measures the total
sidelobes expressed by

ISLv(Q) = 20 log10

 N−1∑
r=0,r ̸=r̂

|qrv|2
 , (7)

where lower ISL values indicate better sidelobe suppression
and, similar to PSL, improved target detectability.

C. Evaluation Based on Validation Scenario

As illustrated in Table I, the generator employs an E2E
approach to transform 1-bit ADC data into HR RD maps,
implicitly fulfilling two tasks jointly: RD processing and de-
noising. This approach is hereinafter referred to as 1-bit ADC
+ (RD+Denoise)-NN. In contrast, using the hybrid approach,
the generator consists only of the denoising module, further
referred to as 1-bit ADC + RD + Denoise-NN. The conversion
of ADC data to RD maps, as detailed in Section II, occurs
before the application of the denoising NN.

As shown in Table III, each method exhibits distinct
strengths in terms of MSE, PSL, and ISL. As detailed in
Section IV-B, the MSE is determined considering all cells
within the final RD maps, whereas PSL and ISL are explicitly
computed for the velocity bin depicted in Fig. 3. Thus, the
MSE serves as a more comprehensive metric, while PSL
and ISL are localized metrics tailored to individual target
velocity bins. The conventional 1-bit ADC + RD approach
achieves the best PSL in the given scenario; however, its total
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Fig. 3. Slices of range-Doppler map for a validation scenario with a single
target. The curves for the different approaches have been normalized to peak
power.

MSE exceeds that of the NN-based methods, indicating that
while it lowers peak sidelobes, the noise level is elevated
due to quantization effects. Moreover, its ISL is greater than
for the other methods. When integrating 1-bit ADC and RD
processing with a denoising-NN in a hybrid approach (1-bit
ADC + RD + Denoise-NN), there is a reduction in the MSE
and an improvement in the ISL. However, this combination
results in a smoothing effect during suppression of the peak
sidelobes. While background noise is reduced, the relative
amplitudes of certain sidelobes increase, causing an increase in
the PSL. The loss function mainly focuses on minimizing pixel
errors and lacks explicit conditions regarding peak sidelobes
so that certain sidelobe levels may rise. Future research might
consider incorporating the PSL and ISL metrics within the
loss function. Integrating RD processing and denoising into
an E2E NN (1-bit ADC + (RD+Denoise)-NN) leads to a
more balanced performance in all metrics. The MSEs are
calculated relative to the HR ADC + RD method, where the
unquantized ADC data undergo conventional RD processing.
This shows that the E2E generator module can efficiently
extract range and Doppler information from the ADC data,
illustrating the adaptability of the developed GAN. It can be
inferred that a denoising NN on quantized ADC data can
mitigate quantization impacts and improve target detectability.

D. Computational Complexity and Resource Consumption

The hybrid approach slightly reduces the floating-point
operations per second (FLOPS), and compared with the E2E
approach, its inference speed is greatly improved, decreasing
from 3.1 s to 1.7 s. Experimental results based on Nvidia
GeForce GTX 1080 Ti show that the hybrid approach requires
an average of 2800 s per epoch during training, while the
E2E approach takes about 6000 s per epoch. These results
demonstrate that the hybrid approach accelerates inference
and significantly shortens training time, thereby enhancing its
appeal for real-time applications.

V. CONCLUSION AND OUTLOOK

Although the E2E generator slightly improves reconstruc-
tion quality, the experimental results indicate that conven-
tional RD processing can achieve comparable performance
when combined with a subsequent denoising NN. In addition,
conventional processing benefits from reduced training time
and lower computational complexity. Given the constraints on
real-time processing and resource limitations, the conventional
approach is more attractive for practical applications.

To prove effectiveness under various conditions, networks
should be trained using various scenarios, including more
targets, target RCSs, and SNRs. Furthermore, the performance
of the model should be assessed by applying it to actual radar
systems.
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