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Abstract—Automotive radar is the main sensor enabling au-
tonomous driving and active safety features. It is required to
provide high-resolution information on the vehicle’s surround-
ings, accurately localize obstacles, and estimate their velocity
in two dimensions. Conventional automotive radars operating
in the far-field regime estimate only the target’s radial velocity
and cannot obtain its tangential velocity. However, the near-field
propagation conditions allow the tangential radar target velocity
estimation. This work leverages our previous identifiability study,
where the conditions for the tangential velocity estimation have
been stated, and proposes an iterative algorithm for tangential
velocity estimation in automotive near-field scenarios using a
non-coherent separated sensor array. The performance of the
proposed approach is evaluated, and its efficiency and near-
field synthetic aperture (NFSA) dependency is demonstrated via
simulations.

Index Terms—Tangential velocity estimation, near-field, auto-
motive radar, Cramér-Rao bound, separated array, non-coherent
arrays

I. INTRODUCTION

Automotive radars enable reliable sensing capabilities in
harsh weather and poor lighting conditions, providing essential
environmental perception for autonomous vehicles [1–3]. As a
result, automotive radar has emerged as a crucial component
of modern advanced driver assistance systems (ADAS) and
autonomous driving technologies [4–8]. Conventionally, radars
estimate the direction-of-arrival (DOA), range, and radial
velocity of targets [9]. However, accurate estimation of two-
dimensional (2D) target velocities has become increasingly
important in automotive applications [10, 11]. In particular,
precise 2D velocity estimation is critical in complex driving
environments such as intersections, merging lanes, and dense
urban traffic, where comprehensive velocity information sig-
nificantly enhances safety and navigation accuracy [12].

Conventional automotive radars cannot directly estimate
the tangential component of a target’s 2D velocity [13].
Several approaches addressing 2D velocity estimation have
been introduced in the literature, primarily in airborne radar
applications [14–17]. In automotive applications, radar-camera
sensor fusion has been proposed to estimate target lateral
velocities [18]. Moreover, automotive radar-based 2D velocity
estimation techniques leveraging prior knowledge from dis-
tributed point cloud detections of moving targets have been
explored in [19, 20]. In addition, target tracking can be used
for 2D velocity estimation [21, 22]. However, target tracking
requires a long observation time, which is limited by the
ADAS requirement for real-time decision-making. Moreover,

during long observation time, the assumption of the target’s
linear and constant velocity may be invalid, which degrades the
target’s parameters estimation performance. Alternative works
have investigated the use of multiple radar arrays to achieve
accurate 2D velocity information [23–26].

Estimating the target tangential velocity is feasible for
automotive radar systems operating in the near-field regime.
Various approaches have explored the near-field propaga-
tion conditions in the synthetic aperture radar (SAR) frame-
work [27–30] and analysis of Cramér-Rao bound (CRB) on the
estimation of static targets coordinates [31–37]. Our previous
work [38], derived the CRB for tangential velocity estimation
using a uniform linear arrays (ULA) under the near-field
model, emphasizing its dependence on the target range and
DOA. However, the ULA aperture is small due to practical
constraints, hence it becomes difficult to obtain the target
angular motion throughout the observation time. Therefore,
the ULA model mostly includes sign ambiguous tangential ve-
locity estimation information. Therefore, this work addresses
this ambiguity by considering the non-coherent wide aperture
separated array for automotive radar.

This work extends our previous work [38] and proposes an
iterative algorithm for tangential velocity estimation based on
the maximum likelihood (ML) estimator using a wide aperture
separated array model. The performance of the proposed
algorithm is evaluated via simulations, and it is shown that
the algorithm is asymptotically efficient.

II. AUTOMOTIVE SEPARATED RADAR ARRAY MODEL

This section presents an automotive radar data model for
the wide aperture separated array configuration, consisting of
two non-coherent subarrays. Consider a single-input multiple-
output (SIMO) automotive radar on the host vehicle, observing
a single target with relative radial and tangential velocity
components at time t = 0, vr, vθ, respectively. In general,
radar clutter can be modeled as multiple targets [39]. This
work introduces a fundamentally new approach, and therefore,
a single target scenario is considered for the clarity of the pre-
sentation. The radar platform consists of a transmitter located
at the origin and a separated array of sensors, comprising two
subarrays separated by a distance D̄, as depicted in Fig. 1.
The elements within each subarray are spaced at λ/2, where
λ is the radar wavelength. The lth sensor location in the qth

subarray is

dq,l = D̄

(
q − 1

2

)
+

λ

2

(
l − L− 1

2

)
. (1)
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The second-order Taylor expansion of the target range from
the lth sensor in the qth subarray is

rq,l (t) ≈ r + vrt− dq,l sin θ +
1

2r
(vθt− dq,l cos θ)

2
, (2)

and the transmitter-to-target-to-receiver delay of the radar
array is

τq,l (t) ≈
2r

c
+

2vrt

c
− dq,l sin θ

c
+

v2θt
2

2rc

+
1

2rc
(vθt− dq,l cos θ)

2
, (3)

where c is the electromagnetic wave propagation speed.

Fig. 1: Schematic representation of the wide aperture separated
radar array in a single-target scenario.

The radar transmits a sequence of K linear frequency
modulated (LFM) chirps of duration, Tc, with pulse repitition
interval (PRI), TPRI > Tc. The signal at the kth transmitted
chirp, at time t ∈

[
Tk − Tc

2 , Tk + Tc

2

]
, is given by:

sk (t) = ejπa(t−Tk)
2

ejωct , ∀k = 0, . . . ,K − 1 , (4)

where Tk =
(
k − K−1

2

)
TPRI. The chirp slope, a, satisfies

aTc = B, and B is the signal bandwidth. The signal’s carrier
angular frequency is ωc = 2πfc, where fc is the radar carrier
frequency, satisfying λfc = c.

The received kth chirp of the signal at time t, and the lth

sensor of the qth subarray is given by

x̃q,l,k (t) = ᾱqe
jπa(t−Tk−τl(t))

2

ejωc(t−τl(t)) + w̃l,k (t) , (5)

where the complex amplitudes, {ᾱq}, include the propagation
path loss and the target reflection coefficient. The complex
amplitudes are assumed to be different for each subarray
in order to avoid the coherency requirement, which is often
difficult to satisfy in practice. The sequence {w̃q,l,k (t)} is a
circularly symmetric complex white Gaussian noise along q,
k, l, and t. The kth received chirp at the lth sensor of the qth

subarray, is simplified by multiplication of (5) with (4) as

xq,l,k (t) = x̃q,l,k(t)s
∗
k(t)

= ᾱqe
−j(2πa(t−Tk)+ωc)τl(t)ejπaτ

2
l (t) + wq,l,k (t) ,

(6)

where wq,l,k (t) = w̃q,l,k (t) s
∗
k (t). By substitution of (3) into

(6), and assuming, ejπaτ
2
l (t) ≈ ej4πa

r2

c2 , the data model can

be rewritten as

xq,l,k (t) = α̃qe
−j2πa(t−Tk)( 2r

c + 2vr
c t− sin θ

c dq,l)

× e
−jωc

(
2vr
c t−

dq,l sin θ

c +
v2
θ

rc t
2− vθ cos θ

rc dq,lt+
cos2 θ

rc d2
q,l

)
+ wq,l,k (t) , (7)

where α̃q = ᾱqe
j4πa r2

c2 e−jωc
2r
c . The radar echo in (7) is

sampled at the time instances, t = Tk + tn, and (7) can be
rewritten as

Xq,l,n,k = α̃qe
−j2πa 2r

c tne−j2πa 2vr
c Tktnej2πa

sin θ
c dq,ltn

× e−jωc
2vr
c Tkej

2π sin θ
λ dq,le−j

ωcv
2
θ

rc T 2
k

× ej
2πvθ cos θ

rλ dq,lTke−j 2π cos2 θ
rλ d2

q,l +Wq,l,n,k .

(8)

Substituting (1) into (8) results in

Xq,l,n,k = αqe
−j2πa 2r

c tne−j2πa 2vr
c Tktnej2πa

D̄q sin θ

c tn

× e−jωc
2vr
c Tkej

2π sin θ
λ dle−j

ωcv
2
θ

rc T 2
k

× ej
2πD̄q cos θvθ

rλ Tkej
2πvθ cos θ

rλ dlTk

× e−j
4πD̄q cos2 θ

rλ dl +Wq,l,n,k ,

(9)

where αq = α̃qe
−j πD̄2 cos2 θ

2rλ ej
2πD̄q sin θ

λ , dl = λ
2

(
l − L−1

2

)
,

and D̄q = D̄ (q − 1/2).

The resulting radar data model in (9) can be rewritten as
two vectors, x0 and x1, corresponding to each subarray, where
xq ∈ CLNK , and

xq = αqη (r, vr, θ)⊙ bq (r, vr, vθ, θ)⊙ zq (r, vθ, θ) +wq ,
(10)

where w0 and w1 are i.i.d., CN
(
0, σ2

wILNK

)
distributed. The

conventional data vector, η (r, vr, θ), satisfies

η (r, vr, θ) = ηR (θ)⊗ ηD (vr)⊗ ηA (r) , (11)

ηR,n (r) = e−j2πa 2r
c tn , (12)

ηD,k (vr) = e−jωc
2vr
c Tk , (13)

ηA,l (θ) = ej
2π
λ sin θdl , (14)

The nuisance vector, bq (r, vr, vθ, θ), satisfies

bq,l,k,n (r, vr, vθ, θ) = e−j2πa 2vr
c tnTke−j2πa

D̄q sin θ

c tn

× ej
2π
rλ D̄qcos

2θdlej
2πvθ cos θ

rλ dlTk , (15)

where the term bq,l,k,n (r, vr, vθ, θ) represents the NKl+Nk+
nth element of the vector bq (r, vr, vθ, θ). Lastly, the tangential
velocity information vector, zq (r, vθ, θ). satisfies

zq (r, vθ, θ) = 1L ⊗ z̃q (r, vθ, θ)⊗ 1N ,

z̃q,k (r, vr, θ) = e−jωc
v2
θ

rc T
2
k e−j

2πD̄qvθ cos θ

rλ Tk . (16)

The wide aperture separated array model in (10) consists
of the conventional target range, radial velocity, and DOA
estimation data vector, η (r, vr, θ). The term, bq (r, vr, vθ, θ)
is the nuisance elements vector, which contains the elements
e−j2πa 2vr

c Tktn and ej2πa
sin θ

c dltn , which include the fast-time
variable tn. Conventionally, elements that include fast-time
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variables appear in the term, ηR (r), in (12). Therefore,
one can infer that these elements are related to the range
migration phenomenon, where e−j2πa 2vr

c Tktn is related to
range migration along the observation time, and ej2πa

sin θ
c dltn

is related to range migration along the array aperture.

III. TARGET PARAMETER ESTIMATION

This section proposes the target parameter estimation ap-
proach using the model in Section II and focuses on tangential
velocity estimation. The proposed iterative algorithm is based
on the ML estimator for the model in (10).

Let x =
[
xT
0 ,x

T
1

]T
denote the concatenated vector of

received radar echo. Using (10), the vector, x, can be modeled
as

x =
[
α0a

T
0 (ψ) , α1a

T
1 (ψ)

]T
+ [wT

0 ,w
T
1 ]

T = A (ψ)α+w ,
(17)

where

A (ψ) =

[
a0 (ψ) 0

0 a1 (ψ)

]
, (18)

α = [α0, α1]
T
, (19)

aq (ψ) = η (r, vr, θ)⊙ bq (r, vr, θ)⊙ zq (r, vθ, θ) , (20)

and ψ = [r, vr, vθ, θ]
T is the vector of unknown parameters

of interest. In this case, x ∼ CN
(
A (ψ)α, σ2

wI2LNK

)
,

and thus, the log-likelihood function for estimating ξ =[
α0,r, α0,i, α1,r, α1,i,ψ

T
]T

from x is

LL (ξ) = −2LNK log 2πσ2
w − ∥x−A (ψ)α∥2

σ2
w

. (21)

Optimization of (21) w.r.t. α, and ignoring constants will result
in [40]

LL′ (ψ) = xHPAx , (22)

where PA = A (ψ)
(
AH (ψ)A (ψ)

)−1
AH (ψ) is the or-

thogonal projection matrix on the column space of A (ψ).
According to (18) and (20), AH (ψ)A (ψ) = 2NKLI2, and
xHA (ψ) =

[
xH
0 a0 (ψ) ,x

H
1 a1 (ψ)

]T
. Therefore, for the non-

coherent wide aperture separated array model in (10), the ML
estimation is defined as

ψ̂ = argmax
ψ

(∣∣xH
0 a0 (ψ)

∣∣2 + ∣∣xH
1 a1 (ψ)

∣∣2) . (23)

However, the straightforward implementation of (23) re-
quires a 4D search, which can be computationally infea-
sible. Therefore, a computationally efficient algorithm that
approximates (23) via coordinate descent is proposed in this
work [41], and summarized in Algorithm 1. Throughout Al-
gorithm 1, calligraphic letters represent reshaped vectors with
the same data, for example M = reshape (m, N,K,L).

Lines 1-4 in Algorithm 1 present a triangulation estimation
of vθ, similar to [26]. The estimated parameters are used to
compensate the data in line 5. In lines 5-8 the coordinated
ascent approach begins with the estimation of r, vr, θ, by
applying the conventional 3D fast Fourier transform (FFT) on
the compensated data. The total log-likelihood function (LF)
for r, vr, θ is constructed by the sum of the squares of both
3D-FFT maps, thus approximating (23).

Next, the second step of the coordinate ascent approach is
executed by the estimation of vr and vθ. The velocities vr and
vθ are simultaneously estimated, as they are strongly coupled
on the slow time axis. The slow time correlator for the radial
and tangential velocity estimation is defined as

z̄q (r, vr, vθ, θ) = z̃q (r, vθ, θ)⊙ ηD (vr) . (24)

The slow-time correlator, z̄q (r, vr, vθ, θ), combines the vθ
near-field information in (16), and the conventional radial
velocity estimation information in (13). First, lines 9-10
present an extraction of the slow-time data using the previous
estimation of r, vr, vθ, θ, where ×n and ×l represent the
tensor products on the fast-time and spatial axes, respectively.
Lines 11-13 present the estimation of vr and vθ according
to (23) and (24).

Algorithm 1 Single Target Parameters Estimation

Require: {x0,x1} - Radar measurements from two subarrays.
Require: a, Tc, K, λ, TPRI, L, N , D̄, - chirp slope, chirp

time, number of chirps, wavelength, PRI, number of
sensors, number of samples per chirp, distance between
the centers of the subarrays.

Require: ε - iterations termination criterion.
1: LF1,q (r, vr, θ) = 3D− FFT (Xq)

2:
{
r̂q, v̂r,q, θ̂q

}
= arg max

r,vr,θ
|LF1,q (r, vr, θ)|

3: r̂ = r̂0+r̂1
2 , v̂r =

v̂r,0+v̂r,1

2 , θ̂ = arcsin
(

sin θ̂0+sin θ̂1
2

)
4: ṽθ =

2r̂(v̂r,0−v̂r,1)

D̄ cos θ̂

5: x̃q = xq ⊙ b∗
q

(
r̂, v̂r, ṽθ, θ̂

)
⊙ z∗q

(
r̂, ṽθ, θ̂

)
6: Lq (r, vr, θ) = 3D− FFT

(
X̃q

)
7: LF2 (r, vr, θ) = |L0 (r, vr, θ)|2 + |L1 (r, vr, θ)|2

8:
{
r̂, v̂r, θ̂

}
= arg max

r,vr,θ
LF2 (r, vr, θ)

9: x̃q = xq ⊙ b∗
q

(
r̂, v̂r, ṽθ, θ̂

)
10: yq = 1

NLη
∗
R (r̂)×n X̃q ×l η

∗
A

(
θ̂
)

11: Lq (vr, vθ) =
∣∣∣yH

q z̄q

(
r̂, vr, vθ, θ̂

)∣∣∣2
12: LF3 (vr, vθ) = L0 (vr, vθ) + L1 (vr, vθ)
13: {v̂r, v̂θ} = argmax

vr,vθ
LF2 (vr, vθ)

14: if |ṽθ − v̂θ| ≥ ε then
15: ṽθ = v̂θ
16: Return to 6.
17: end if
18: return

{
r̂, v̂r, v̂θ, θ̂

}
In the multi-target scenario, the algorithm can be adapted

to estimate the parameters of all targets, thus also addressing
clutter-dominated scenarios.

IV. PERFORMANCE EVALUATION

The performance of the proposed algorithms for tangential
velocity estimation is evaluated in this section. Consider a
single target with the following parameters: r = 90 m,
vr = −20 m/sec, vθ = 10 m/sec, θ = 40◦. In addition, for
simplicity we consider |α0| = |α1|. Fig. 2 shows the evaluated
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root mean-squared-error (RMSE) of Algorithm 1 as a function
of SNR, defined as

SNR =
NKL

(
|α0|2 + |α1|2

)
σ2
w

. (25)

The RMSE performance is compared to the CRB for the model
in (10), given by

Cvθ,vθ (ξ) =
r2λ2

π2K2T 2
PRI (P1 + P2 + P3) SNR

, (26)

P1 =
8NFSA2

45
, (27)

P2 =
D2 cos2 θ

18
, (28)

P3 =
D̄2 cos2 θ

6
, (29)

where the physical aperture of each subarray is D = Lλ/2,
and the near-field synthetic aperture (NFSA) is defined as
NFSA = |vθKTPRI|. The RMSE is evaluated over 1000
Monte-Carlo simulations for each SNR. The evaluated RMSE
of Algorithm 1 achieves the CRB at SNR = 23 dB. It can
be observed that for SNR > 22 dB, Algorithm 1 achieves the
same performance as the straightforward ML estimator, which
involves a 4D search procedure. Similarly, it can be shown that
the algorithm achieves the CRB for the parameters, r, vr, θ.

20 25 30 35

SNR [dB]

10
-1

10
0

10
1

R
M

S
E

 [
m

/s
e
c
]

v  RMSE

Cramer-Rao Bound

Fig. 2: RMSE of Algorithm 1 for estimating vθ compared to
the CRB versus SNR with target parameters r = 90 m, vr =
−20 m/sec, vθ = 10 m/sec, θ = 40◦, and radar parameters
D̄ = 50 cm, K = 2500, L = 50, TPRI = 20 µ sec, B =
250 MHz, fc = 77 GHz.

Fig. 3 shows the evaluated RMSE over 2000 Monte-Carlo
simulations for each NFSA, D̄ = {10, 50, 100, 150} cm, and
SNR = 25 dB. The NFSA grid is defined by setting the total
observation time, KTPRI, to 50 msec, and varying vθ from
0 to 30 m/sec. Notice that for D̄ = D = 10 cm, the radar
array configuration is ULA, resulting in vθ sign ambiguity due
to the small physical aperture of the ULA. A Slight increase
in D̄ allows to resolve the ambiguity in the sign of vθ, as
the RMSE for D̄ = {50, 100, 150} cm is below 1m/sec
for NFSA < 100cm. Notice that for NFSA < 100 cm and

0 25 50 75 100 125 150

NFSA [cm]

10
0

10
1

R
M

S
E

 [
m

/s
e
c
]

Fig. 3: The RMSE of Algorithm 1 for estimating vθ versus
NFSA for different subarrays separation, D̄, with target param-
eters r = 90 m, vr = −20 m/sec, θ = 40◦, SNR = 25 dB
and radar parameters K = 2500, L = 50, TPRI = 20 µ sec,
B = 250 MHz, fc = 77 GHz.

D̄ = {50, 100, 150} cm, the RMSE decreases with increasing
NFSA. However, the dependency of the RMSE on the NFSA
decreases with increasing D̄. This result stems from (26),
as the proposed estimator achieves the CRB. According to
(26), the CRB decreases with increasing the NFSA, and
for sufficiently large D̄, much larger NFSA is required for
dependency of the CRB on the NFSA.

Notice that the RMSE increases with increasing NFSA for

NFSA ≥ 100cm. This is due to the element e−jωc
v2
θT2

k
rc in

z̄q (r, vθ, θ). In lines 1-2 of Algorithm 1, when r, vr, and θ are
estimated for each subarray, vθ is assumed to be 0, and thereby

ignoring the term e−jωc
v2
θT2

k
rc . Disregarding this term results in

target "Doppler" migration along the observation time, due
to the term T 2

k in the phase. This migration phenomenon
results in a loss of the magnitude in the r.h.s. of line 2 in
Algorithm 1, which leads to higher threshold SNR. In the
case of Fig. 3, SNR = 25 dB is below the threshold Signal-
to-Noise Ratio (SNR), which leads to an increased RMSE for
NFSA ≥ 100 cm. To improve the peak magnitude, one is
required to do estimate v2θ , and thus, one is required to do a
4D search.

V. CONCLUSION
This work introduces a wide aperture separated array au-

tomotive radar for tangential velocity estimation. An iterative
algorithm for estimating the unknown target parameters, based
on the ML is derived, and its performance for tangential
velocity estimation was studied. The algorithm is shown to be
asymptotically efficient, and its performance improves with
increasing NFSA, up to a certain NFSA value where the
Doppler migration along the slow-time becomes dominant.
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