Radar Tracking Enhancement Utilizing Target Size
Estimation Based on the Range-Doppler Map
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Abstract—In advanced traffic safety systems, accurate vehicle
tracking is crucial to improve road safety. However, in radar-
based systems, ’glint noise,” caused by wandering reflection
points on large vehicles such as trucks and buses, often poses a
significant challenge by introducing errors in vehicle tracking. In
this paper, we consider a radar-based traffic monitoring system,
where such errors especially occur in situations involving large
vehicles .

This paper proposes an enhancement to tracking by leveraging
a novel Range-Doppler-map-based method to mitigate glint noise
effects, specifically for large vehicles. The core of our approach
involves the size estimation of the target based on its signature
on the Range-Doppler Map. By employing a Kalman Filter (KF),
the proposed system simultaneously tracks both the position and
the dynamically estimated size of vehicles, enabling more precise
estimation of their movement. The proposed approach shows
enhanced accuracy in tracking vehicles compared to commonly
used methods. Our experimental results, based on measurements
taken from a real-life traffic scenario, demonstrate the potential
of this method to enhance the reliability of traffic monitoring
systems.

Index Terms—KEF, Traffic Radar, Tracking, Range-Doppler
map, Vehicle size estimation.

I. INTRODUCTION

The utilization of stationary radar systems for traffic safety
monitoring has become significantly important, particularly
in detecting and tracking both vehicles and Vulnerable Road
Users (VRUs) such as pedestrians and cyclists. Radar sensors,
specifically Millimeter-Wave (MMW) radars, have proven
beneficial due to their resilience under various weather con-
ditions and in visibility-limited scenarios [1], [2]. Despite
numerous advancements, radar-based systems experience spe-
cific difficulties when observing large vehicles, specifically
the phenomenon of glint noise. The glint noise arises due
to multiple reflective surfaces, causing rapid fluctuations in
radar reflections, which, in return, significantly complicates the
accuracy of tracking relatively large vehicles such as trucks,
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buses, and articulated vehicles [3]. The impact of glint noise
on radar data includes inconsistent measurement of target
velocity, position, and tracking continuity, thus substantially
impairing radar-based detection and tracking algorithms [4].
Studies have illustrated that the glint phenomenon of large
vehicles also led to fragmented tracks and an increased false
alarm rate, which ultimately reduces the reliability of the
system [3].

Previous studies used different radar technologies, primarily
Frequency-Modulated Continuous Wave (FMCW) radars, due
to their effectiveness in measuring target range, velocity,
and the angle of arrival [5]. In addition, signal processing
techniques, including Kalman filtering and particle filtering
methods, have been widely used to mitigate noise and improve
tracking accuracy [3], [6]. Furthermore, researchers commonly
combine radar sensing with complementary sensor technolo-
gies such as LiDAR or camera to improve the detections
performance [7]. In addition, trained Artificial Intelligence
(AI) models have recently been used, particularly in the field
of target classification, for road safety and increased the
reliability of radar monitoring systems [8].

A notable research gap identified in the reviewed literature
is the insufficient development of dedicated algorithms and
signal processing techniques specifically targeting glint noise
reduction in tracking large vehicles. Although previous studies
have highlighted glint-related tracking issues, they commonly
employ standard filtering techniques, which may not fully
resolve complex glint scenarios experienced in practical traffic
environments [9].

In this paper, we are providing a novel method to overcome
the glint noise in tracking large vehicles, utilizing solely
the radar sensor, by estimating the target’s length and width
utilizing the Range-Doppler (RD) map, then incorporating the
size information into the tracking algorithm. Afterwards, a
camera-based ground truth system is used to verify the results.

The paper is constructed as follows: as this section (the in-
troduction) presents the problem domain, section two, method-
ology, provides an explanation about the carried-out experi-
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ment, and the work-flow of the various data processing tech-
niques. In the third section, results are presented that compare
the accuracy of the proposed method with the traditional point-
cloud tracking method, relative to the ground truth.

II. METHODOLOGY

The main focus of this paper is to reduce the glint effect
caused by wandering reflections on large vehicles. A direct
clustering approach is often used to cluster radar detections of
a detected target based on different detections’ criteria (spatial
and/or velocity features) [10]. This method highly depends
on the reflections’ position along the target’s body. Hence,
estimating the target’s dimensions can help reducing the abrupt
fluctuations of the cluster’s center caused by the glint noise. By
pinpointing the obtained detections on the estimated size, and
tracking both, the dimensions and the position of the target.

A. Experiment

The primary goal of tracking a vehicle approaching an
intersection is to warn an oncoming driver of a potential
collision with a VRU at a predicted time and location, often
in the driver’s blind spot (e.g., when both the vehicle and the
VRU have the green light to turn right and to cross, respec-
tively). VIDETEC-2 project addresses this critical scenario,
by observing the intersection using radar sensors and Ultra-
Wideband (UWB) nodes, then applying a target classification
algorithm backed by a trained Al model [8]. After localizing
and classifying the targets in the environment, a data fusion
algorithm is applied to track the observed targets [11], in order
to predict any potential danger that may fall onto the VRU, and
in return, a warning signal is broadcasted to the vehicle [12].
Therefore, accurate vehicle tracking is critical; however, large
vehicles such as trucks pose a challenge. Their considerable
length and the effect of glint noise cause the center of the
clustered detections to either fluctuate as seen in Fig. 1, or
remain nearly stationary as they exit the radar’s Field of View
(FoV), degrading the prediction accuracy.

In this paper, we address this issue by introducing a novel
pre-processing method for radar data, which is applied to the
tracker to enhance its accuracy. The proposed algorithm is
demonstrated using a case study of a long vehicle from real-
life traffic, as shown in Fig. 1.

Radar detections linearized on the map Image of the current environment
e
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Fig. 1: A truck passing with very sparse detections, due to the
glint noise, with detections and clusters centers.

The workflow of the proposed processing is broken down
into the steps shown in the block diagram in Fig. 2.
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Fig. 2: A block diagram of the data pre-processing and
tracking pipeline.

B. Size estimation

To estimate the target’s size, based on its RD map distribu-
tion, several pre-processing operations are implemented:

1) RD-map peaks: a target, as large as a truck, appears on
the RD map with a unique signature. This signature reveals
some spatial feature that detections fail to provide, as seen
in Fig. 3, where the detections of the target are located on
the RD map, compared to the sub-peaks around them with
slightly lower magnitude, they follow a certain pattern that
can be useful for estimating the target’s size.

Linearized radar detections Range-Doppler map at the same time step

¥ Position (m)

o -0 w0 o
Doppler bins

Fig. 3: The truck’s signature on the RD map versus its
detections showing the lack of spatial features obtained from
the point cloud detections.

To extract these sub-peaks, a localized sub-peak detection
algorithm is applied on the RD map, denoted as RDM &
RH*W (with H and W being the number of range and
Doppler bins, respectively). For each radar detection located
at coordinates (r, 7*), we define a local Region of Interest (Rol)
Q, ; as the set of bins:

Qo ={(uw,v) |r—k<u<r+kr—k<v<7r+k}
where u and v are the row (range) and column (radial velocity)

indices within the local Rol, respectively, and k is the half-
window size for a window of size w X w where w = 2k + 1.
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Within the Rol €, ;, the local mean g, and the local
standard deviation o, , are calculated as

! > RDM(u,v),

ot = o]
| i
('lL,U)EQTj

1 2
O = o1 Z (RDM(u,v) - Mm*) ,
’ (u,0)EQy 4

with |Q, ;| being the number of bins in the Rol [13]. An
adaptive threshold 7)., is then defined as

Tr,?'" = M + QT

with « being a scaling factor that controls the selectivity of the
threshold [14]. Within the Rol, any bin with the coordinates
(u,v) that has a magnitude which exceeds this threshold and
is a local maximum relative to its neighbors is considered
a sub-peak. The collection of these sub-peaks, aggregated
over all radar detections, provides additional information about
the object’s spatial extent while minimizing the influence of
random noise.

2) clustering sub-peaks: since the extracted sub-peaks are
around the radar detections, they form clusters, that are typ-
ically neighboring to each other on the RD map, in case
the detections belong to a single target. Hence, a clustering
algorithm is applied on the sub-peaks to bundle the different
clusters together, and form a single, yet sizable, cluster.
In this application, the Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) algorithm is applied on
the RD map to cluster the regions with dense sub-peaks and
form a relatively homogeneous shape of Range and Doppler
bins, which in return could exploit the spatial features of the
target.

3) Velocity components estimation: A radar detection point
consists of the reflection point’s range R, its angle of arrival
¢, its elevation angle 6, and its radial velocity R. The lin-
earization process of such detections is commonly carried out
as:

x = Rcos(f) cos(¢p), y = Rcos(f)sin(¢) (1)

Nevertheless, since the radar sensor in this implementation is
mounted on the side of the road, and the interest is focused
only on the targets in the the z-y plane, the elevation angle is
neglected in the linearization process.

Linearizing the measured radial velocity R can be derived
from (2), by solving for the velocity components v, and vy
in the cartesian coordinates.

R=u, cos ¢ + vy sin ¢ 2)
However, a combination of v, and v, yield to the same
radial velocity R, which means that v, and v, cannot be
determined from a single pair of (R, ¢). Therefore, in case
of a rigid object that reflects more than one detection, the true
velocity components v, and v, can be calculated by the linear
equations (3). By solving for v, then substituting in (2).

Ry Vg COS @1

_ Ry Vg COS P2
N sin ¢1 sin (bl

sin ¢2 sin ¢2

3)

Uy

4) sub-peaks linearization: the clustered sub-peaks can
identify the range R and the radial velocity R of minor
reflections on the target, yet they do not explicitly show the
spatial coordinates of it, since the x-y coordinates of the
target are calculated using (1), the ¢ information of the sub-
peaks are missing. Therefore, equation (2) is used to restore
the ¢ information, since these sub-peaks are estimated to be
belonging to a single target, thanks to the clustering process. In
addition, the values of v, and v, were previously calculated,
which makes it possible to retrieve the ¢ information of each
sub-peak. Fig. 4 shows the linearized sub-peaks in cartesian
coordinates with a bounding box around them that could help
in tracking the spatial properties of the target.
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Fig. 4: The extracted peaks from the RD map are converted
into Cartesian features along with the tracked bounding box.

C. Tracking

The main goal of the previously implemented pre-
processing is to obtain not only a representation of an object
in a shape of a single point, whether it is a cluster’s center, or
a single detection, but also the complete estimated size of the
object, to improve tracking and prediction of the object’s posi-
tion in future time steps. However, the conventional approach
of tracking a bounding box by using its centroid along with its
dimensions and velocities [15] can lead to inaccuracies when
the vehicle partially leaves the radar’s field of view, as seen in
Fig. 4, where its footprint shrinks and the centroid no longer
represents the true center of the object.

Instead, the tracking algorithm uses an anchor point, which
is the point opposite to the direction of movement (i.e.,
typically the rear of the vehicle) that remains visible longer in
the FoV. Given the estimated cartesian velocity components,
this anchor point can be estimated on the bounding box and
used in the state vector to more reliably associate detections
with the track. Once the clustered peaks are distilled into a
bounding box with length L and width W, and an anchor
point (Zanchor, Yanchor), the measurement vector z is given
by:

z = [xanch0r7 Yanchors L7 W] (4)

Hence, a Kalman Filter is implemented to track the position
and the size of the target, by integrating the estimated length
and width of the observed object into the state vector x as in:

X = [, Uy, Y, vy, L, W]T (5)
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where v, and v, are the cartesian velocity components. Using
the same approach in [8] to determine the target’s class, the
values of L and W in the state vector x can be initialized with
a predefined value according to the class.

For state prediction, a constant-velocity and constant-size
model is adopted as F, where the state propagation in the
time step k + 1 after a time At from the current state Xy is
calculated as:

1 At 0 0 0 O
0O 1 0 0 0 0
0 0 1 At 0 O
Xk+1|k = 0 0 0 1 0 0 Xk|k7
0O 0 0 0 1 O
0O 0 0 0 01
F

similarly, the predicted covariance propagation Py ), of the
current state’s covariance Py, is given by:

Prp =FPy FT + Q,

where Q is the process noise accounting for small accelera-
tions or size variations.

When a measurement is acquired, the update process starts,
by defining a linear measurement model z; for the anchor
point and the target size observation:

1 0 00 0 O
001 0 0 O
Zk= 1o 0 0 0 1 0f Kk + vy, vi~N(0,R).
0 0 0 0 0 1
H

where H is the measurement matrix that links the tracker state
to the preprocessed measurement, and Xy,_1 is the predicted
(or a priori) state estimate before acquiring the measurement
z;, and vy is the measurement noise related to the sensor
inaccuracies.

By observing the radar data, it was noticed that large
vehicles (e.g., trucks or those with trailers) take longer to
fully enter and exit the radar’s FoV. As such vehicles move
into the FoV, an increasing portion becomes visible, while
during exit, the observed vehicle size decreases. To address
this discrepancy, the tracker incorporates a gating mechanism
that compares the measured target’s dimensions (length L and
width W) with the corresponding values in the tracked state x,
which allows for the size to increase as the vehicle progresses
into the FoV, and prevents it from shrinking while exiting
the FoV, by inflating the corresponding diagonal elements of
the measurement noise covariance matrix R to a large value
to slow the update rate for L and W, preventing false size
shrinkage and ensuring that the vehicle’s true geometry is
maintained in the tracker.

The Kalman filter update equations are given by [16]:

K =P H (HP,_ H +R)™,

Xk = Xpjh—1 + K (2 — HXpp-1),

Pup = (1K H)Pppp_1.

The Kalman gain K determines the weight assigned to
the measurement residual (z; — H xj,,—1), and I denotes the
identity matrix. The updated (a posteriori) state estimate and
its covariance are given by xy;, and Py, respectively.

III. RESULTS AND DISCUSSION

To assess the performance of the proposed approach, two
evaluation methods are employed. First, the performance is
compared against the traditional DBSCAN clustering algo-
rithm applied to radar detections. Second, the Intersection over
Union (IoU) metric and the center error metric are utilized to
quantify the accuracy of the estimated bounding box.

A. Evaluation of Conventional DBSCAN

Experimental results indicate that even after tuning DB-
SCAN across various epsilon values, the conventional ap-
proach struggles to group radar detections into a single coher-
ent cluster. As shown in Fig. 5a, at e = 5, only around 40%
of frames yield exactly one cluster per frame, consistent with
the single-target ground truth. This low accuracy highlights the
challenges posed by glint noise in automotive radar data, often
resulting in missegmentation into multiple small clusters.

To further assess the performance, we calculated the Eu-
clidean distance between the centroid of the detected cluster
and the ground truth centroid for frames with a single cluster
(see Fig. 5b). These metrics underscore the need for improved
clustering techniques. Despite the low overall success rate,
when DBSCAN forms a single cluster, larger e values re-
markably tend to yield centroids closer to the ground truth.
However, the Euclidean error remains high (approximately 7
meters). Even at the optimal € for centroid accuracy, overall
clustering performance is insufficient, and increasing e beyond
5 is impractical due to merging distinct clusters and generating
more false positives.

C
-
&
Centroid Distance Error

10 15 20 25 3.0 35 40 45 5.0 255 3.0 35 20 45 5.0
Epsilon Value Epsilon Value

(a) (b)

Fig. 5: DBSCAN clustering performance: (a) percentage of
correctly clustered frames for different e values, and (b)
distance between the correctly clustered clusters’ mean and
the ground truth.

B. Evaluation of IoU and Center Error

Fig. 6b illustrates the evolution over time of the center
error, which is the Euclidean distance between the centroids
of the estimated and ground truth bounding boxes. In the
early frames, the error is noticeably high, probably due to
factors such as glint noise, sparse detections when the truck
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Fig. 6: Tracking performance metrics: (a) IoU between esti-
mated bounding boxes and ground truth, and (b) center error
over frames.

first appears, and the radar’s tendency to detect the closest
point within its field of view, which is typically the front
of the truck. As the tracker gathers more data and refines
its estimates, the center error decreases remarkably, reflecting
enhanced accuracy in pinpointing the true position of the
target.

loU (%)

Center Error (m)

loU Distribution Center Error Distribution

Fig. 7: Box plot illustrating the distribution of center error
metric in meters, and the percentage of Intersection over Union
(IoU).

In Fig. 7, a box-and-whisker plot summarizes the overall
performance in terms of both IoU and center error. For most
frames, the IoU values are high, meaning the estimated and
actual bounding boxes overlap well. However, a few frames,
mostly at the beginning, show lower IoU. This could be due
to the early stages of tracking, as the tracker is still fine-tuning
its heading estimation. Notably, even in these cases, the center
error remains low, indicating that the primary issue stems from
uncertainties in heading estimation rather than inaccuracies in
size estimation.

Conversely, the center error distribution reveals a mean
error of approximately 2.2 meters with a standard deviation
of around 1.24 meters, suggesting that although certain frames
exhibit larger errors, the majority of estimates remain within
a meter or two of the ground truth centroid.

IV. CONCLUSION AND FUTURE WORK

The findings in this paper highlight the need for a more
reliable approach to radar-based vehicle tracking. The pro-
posed method enhances clustering stability and tracking accu-
racy by incorporating target size estimation from the Range-
Doppler map. In safety-critical applications such as traffic

monitoring, where precise tracking of large vehicles is crucial,
these enhancements help reduce the impact of glint noise on
the tracker, increasing the tracking accuracy, and improving
the overall reliability of the system. This approach will be
extended in the future to incorporate multiple objects in the
scene from a 2D Range-Doppler map.

REFERENCES

[1] Hasch, J., Topak, E., Schnabel, R., Zwick, T., Weigel, R., & Wald-
schmidt, C., “Millimeter-wave technology for automotive radar sen-
sors in the 77 GHz frequency band,” [EEE Transactions on Mi-
crowave Theory and Techniques, vol. 60, no. 3, pp. 845-860, 2012,
doi:10.1109/TMTT.2011.2178427

[2] Wenger, J., “Automotive radar—status and perspectives,” in 2005 IEEE
Compound Semiconductor Integrated Circuit Symposium, pp. 4-7, 2005,
doi:10.1109/CSICS.2005.1531741

[3] Patole, S. M., Torlak, M., Wang, D., & Ali, M., “Automotive radars: A
review of signal processing techniques,” IEEE Signal Processing Mag-
azine, vol. 34, no. 2, pp. 22-35, 2017, doi:10.1109/MSP.2016.2628914

[4] Y. Zhang, X. Li, and M. Xing, “Maneuvering target tracking using
IMMPF in Passive Coherent Location radar,” in Proceedings of the 2011
IEEE CIE International Conference on Radar, Chengdu, China, Oct.
2011, pp. 1241-1244, doi:10.1109/CIE-Radar.2011.6159728

[5] D. M. Patterson and R. A. Ashley, “Glint Tracking Errors in Radar,”
in A Nonlinear Time Series Workshop: A Toolkit for Detecting and
Identifying Nonlinear Serial Dependence, Boston, MA: Springer US,
2000, pp. 121-136, doi:10.1007/978-1-4419-8688-7.

[6] Bar-Shalom, Y., Li, X. R., & Kirubarajan, T., Estimation with Appli-
cations to Tracking and Navigation: Theory Algorithms and Software.
John Wiley & Sons, 2001.

[71 A. Malacarne, F. Laghezza, F. Scotti, A. M. Tulino, A. Manna, and
A. Bogoni, “Integrated multi-frequency lidar/radar system for precise
and robust automotive applications,” in Proceedings of the 2015 IEEE
International Conference on Microwaves, Communications, Antennas
and Electronic Systems (COMCAS), Tel Aviv, Israel, Nov. 2015, pp.
1-5, doi:10.1109/RADAR.2015.7131160

[8] R. Murtaja, M. A. Raslan, T. Uhlich and A. Becker, "Comparison of
Single Frame Classification with Micro-Doppler Classification of VRUs
for Traffic Radar,” in 2024 IEEE 13rd Sensor Array and Multichannel
Signal Processing Workshop (SAM), Corvallis, OR, USA, 2024, pp. 1-8,
doi:10.1109/SAM60225.2024.10636619

[91 A. Malacarne, F. Laghezza, F. Scotti, A. M. Tulino, A. Manna, and
A. Bogoni, “Integrated multi-frequency lidar/radar system for precise
and robust automotive applications,” in Proceedings of the 2015 IEEE
International Conference on Microwaves, Communications, Antennas
and Electronic Systems (COMCAS), Tel Aviv, Israel, Nov. 2015, pp.
1-5, doi:10.1109/TITS.2019.2950522

[10] B. Lorbeer, A. Kosareva, B. Deva, D. Softi¢, P. Ruppel, and A. Kiipper,
“Variations on the Clustering Algorithm BIRCH,” Big Data Research,
vol. 11, pp. 44-53, Mar. 2018, doi:10.1016/j.bdr.2017.09.002

[11] M. A. Raslan, M. Schmidhammer, F. de Ponte Miiller, R. Murtaja, A.
Becker, and T. Uhlich, “Robust Localization and Tracking of VRUs with
Radar and Ultra Wide Band Sensors for Traffic Safety,” SSRN preprint
(under review), Oct. 2024. https://dx.doi.org/10.2139/ssrn.5004286

[12] Radar-Sensor.com, “Traffic Measurement Campaign in Project Vide-
tec 2,7 2024. [Online]. Available: https://radar-sensor.com/news/traffic-
measurement-campaign-in-project-videtec-2.html, accessed Aug. 15,
2024.

[13] M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed. New
York, NY, USA: McGraw-Hill, 2014.

[14] H. Rohling, “Radar CFAR thresholding in clutter and multiple target
situations,” IEEE Transactions on Aerospace and Electronic Systems,
vol. AES-19, no. 4, pp. 608-621, Jul. 1983.

[15] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in Proc. IEEE Int. Conf. Image Process. (ICIP),
2016, pp. 3464-3468, doi: 10.1109/ICIP.2016.7533003.

[16] R. E. Kalman,“A new approach to linear filtering and prediction prob-
lems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.

1411



