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Abstract—This paper presents an optimized audio recog-
nition system that integrates feature-based and deep learn-
ing approaches, fine-tuned for high-accuracy classification. The
study builds upon previous research, where all possible feature-
classifier combinations were analyzed to determine the most
effective configurations. Based on these findings, we focus on
MFCC-34 and MFCC-38 for SVM and kNN, as well as spec-
trograms and Mel-spectrograms for CNN, forming six possible
model combinations. A majority voting mechanism is imple-
mented to enhance classification robustness. While grid search
was previously applied to SVM and kNN, this work further
refines the system by performing hyperparameter tuning for
CNN, optimizing Conv2D filters, layer units, dense layer size,
learning rate, dropout, and optimizer type. Additionally, the
number of epochs is systematically tested from 10 to 30 in
steps of 5 to determine the optimal training duration. The
final implementation follows a structured pipeline, including data
preparation, feature extraction, model training, evaluation and
deployment preparation. The system is validated using multiple
performance metrics, tuning process visualizations, and a 5-
fold cross-validation repeated 20 times. Results demonstrate the
effectiveness of our approach, achieving 97.65% accuracy for
CNN, 97.42% for SVM, and 95.53% for kNN, confirming the
reliability of the proposed majority voting-based classification
system.

Index Terms—Audio recognition, MFCC, spectrograms, Mel-
spectrograms, CNN, SVM, kNN, Hyperparameter tuning, Ma-
jority voting, Classification Performance, Box and whisker plot,
audio-based assistive systems

I. INTRODUCTION

Audio recognition has become an essential component of
modern artificial intelligence applications, enabling various
real-world use cases such as speech recognition, environmental
sound classification [1], speaker identification, and assistive
technologies. Among these, audio-based assistive systems
for elderly individuals [2] play a crucial role in improving
accessibility, safety, and daily communication. Recognizing
and interpreting sounds accurately allows intelligent systems
to respond effectively to user needs, making speech-based
interfaces, emergency detection, and smart home automation
more efficiently. Although the method presented in this paper
can be implemented in other scenarios, here it is evaluated
on an audio dataset intended for Romanian-speaking patients
(Section II-A).

Traditional audio classification approaches rely on hand-
crafted features such as Mel-Frequency Cepstral Coefficients

(MFCC). However, the rise of deep learning-based models,
particularly Convolutional Neural Networks (CNNs), has sig-
nificantly improved classification performance by learning
hierarchical representations from spectrograms. Existing audio
classification systems often face several challenges, includ-
ing the selection of the most effective feature representation
[3], optimization of classifier parameters [4], computational
efficiency for real-time applications, and the need for robust
decision-making strategies. Selecting the right features, such
as MFCCs or spectrograms, greatly influences the performance
of different classifiers, and tuning hyperparameters is essential
for maximizing model accuracy. Finally, relying on a single
model for classification may lead to misclassifications in
certain cases, making ensemble techniques such as majority
voting a promising solution. This study aims to address
these challenges by designing an optimized audio recognition
framework that integrates traditional machine learning and
deep learning models while leveraging hyperparameter tuning
and majority voting for classification.

Previous studies have conducted extensive evaluations of
various feature-classifier combinations, testing multiple fea-
ture types, including MFCC, LPC, LPCC, MPEG-7, PLP,
and RASTA-PLP, with dimensions ranging from 10 to 38
in steps of 2, as well as 64 features. These features were
tested with eight traditional classifiers, as well as three deep
learning models, namely ANN, CNN, and LSTM-RNN. The
findings demonstrated that MFCC-34 and MFCC-38 were the
most effective feature representations for SVM and kNN,
while spectrograms and Mel-spectrograms yielded the highest
performance for CNN. Grid search was applied to optimize
SVM and kNN parameters, leading to significant improve-
ments in classification accuracy. These findings serve as the
foundation for this study, which further refines the system by
performing hyperparameter tuning for CNN and evaluating the
best combination of classifiers through majority voting (see [5]
and references therein).

Building on prior research, this paper proposes an op-
timized audio recognition system that integrates MFCC-34
and MFCC-38 for SVM and kNN, along with spectrograms
and Mel-spectrograms for CNN, to ensure optimal feature
selection. This study focuses on hyperparameter tuning for
CNN and optimizing key parameters. Furthermore, the impact
of the number of training epochs is systematically analyzed.
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A majority voting-based decision mechanism is implemented
across six model configurations to enhance classification ro-
bustness and ensure greater reliability in predictions. The final
implementation follows a structured pipeline consisting of data
preparation, feature extraction, model training, evaluation, and
deployment preparation. Results confirm the effectiveness of
this approach, with the optimized model achieving a classifica-
tion accuracy of 97.65% for CNN, 97.42% SVM and 95.53%
for kNN, demonstrating the reliability of the proposed majority
voting-based classification system.

The remainder of this paper is structured as follows. The
next section presents an analysis of the dataset, the feature
extraction process, classifier selection, and hyperparameter
tuning. The following sections describe the experimental
setup, including the implementation pipeline and performance
metrics (Section III), as well as a discussion of the results
(Section IV). Finally, the paper concludes with a summary of
findings and potential future research directions (Section V).

II. AUDIO ANALYSIS, MODEL DEVELOPMENT
AND OPTIMIZATION

A. Dataset

The dataset used in this study consists of 26,640 audio sig-
nals, meaning 148 classes, recorded by both male and female
voices in Romanian. The primary focus is on recognizing the
names of medicines, as the final optimized audio recognition
system is intended for an assistive robot. The dataset is
structured into five different scenarios, each representing a
distinct category of sound events. The detailed breakdown is
as follows:

• Kitchen Scenario – Consists of 9 classes, with each
class containing 30 original sound events, which were
expanded using 5 data augmentation methods, resulting
in a total of 1,620 audio signals (9 × 30 × 6 sets).

• Room Scenario – Includes 11 classes, each with 30
original sound events, augmented into 1,980 audio signals
(11 × 30 × 6 sets).

• Appliances Scenario – Covers 5 classes, with augmenta-
tion resulting in 900 audio signals (5 × 30 × 6 sets).

• Voice Scenario – Represents 117 classes, primarily focus-
ing on spoken words, particularly medicine names. With
augmentation, this category contributes the largest portion
of the dataset, totaling 21,060 audio signals (117 × 30 ×
6 sets).

• Non-Verbal Scenario – Comprises 6 classes, including
non-verbal sounds such as breathing, coughing, and other
relevant noises. This section contains 1,080 audio signals
(6 × 30 × 6 sets).

Data augmentation methods include pitch shifting, speed
variation, noise injection, time stretching, and time-frequency
masking, ensuring that the system performs robustly under
diverse real-world conditions. Note the dataset’s composition
and the dominance of the voice scenario, which is critical for
the final application of medicine name recognition.

B. Feature Extraction

Feature selection plays a crucial role in optimizing the
performance of the audio recognition system. Based on pre-
vious research findings and experimental results, this study
focuses on two primary feature extraction techniques: Mel-
Frequency Cepstral Coefficients (MFCCs) and Spectrogram-
based representations.

MFCCs have been widely used in speech and audio process-
ing due to their ability to capture essential frequency charac-
teristics relevant for classification tasks [6]. After extensive
evaluation of different feature subsets, two optimal configu-
rations were selected: MFCC-34 and MFCC-38. MFCC-34
includes 34 selected coefficients extracted from each audio
signal. The heatmap in Fig. 1 visualizes the distribution
of these coefficients across multiple samples. The feature
heatmap in Fig. 2 illustrates the variation of MFCC-38 values.
These selected MFCC representations serve as inputs for tradi-
tional machine learning classifiers, specifically SVM and kNN,
which demonstrated superior performance in prior studies.

Fig. 1. MFCC-34 Feature Representation; Heatmap of Extracted Coefficients.

Fig. 2. MFCC-38 Feature Representation; Heatmap of Extracted Coefficients.

Fig. 3 and 4 illustrate the comparison between amplitude-
based and dB-based spectrograms. The amplitude-based spec-
trogram represents raw energy distribution over time and
frequency, while the dB-based spectrogram provides a log-
arithmic scaling that enhances the visibility of lower-energy
frequency components. This transformation is essential for
audio recognition as it aligns more closely with human au-
ditory perception, making features more distinguishable and
robust against variations in signal amplitude. Consequently,
dB-scaled spectrograms are utilized in our implementation to
improve classification accuracy. For further analysis, Fig. 4
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Fig. 3. Spectrogram Representation – Signal Amplitude over Time and
Frequency for algocalmin recorded by man voice.

Fig. 4. Spectrogram Representation – Log-Scale dB Visualization for algo-
calmin recorded by man voice.

and Fig. 5 illustrate an example of the word “Algocalmin”,
recorded by a male speaker, displayed in both Spectrogram and
Mel-Spectrogram formats. These visualizations highlight the
distinctive patterns used by CNN models for classification. By
leveraging these carefully selected feature sets, the proposed
system ensures high classification accuracy while maintaining
a computationally efficient framework for real-time assistive
applications.

Fig. 5. Mel-Spectrogram Representation – Log-Scale dB with 64 mels for
algocalmin recorded by man voice.

C. Classifier Selection

We selected SVM, kNN, and CNN based on their effective-
ness in prior studies [5]. SVM and kNN excel in structured
feature-based classification, making them suitable for MFCC
features, while CNN leverages spatial patterns in spectrograms
and Mel spectrograms. Grid search and hyperparameter tuning
further optimized performance.

Additionally, the choice of classifiers was influenced by
their ability to generalize across diverse acoustic conditions.
SVM and kNN, known for their strong performance with
smaller feature sets, effectively handle MFCC-based repre-
sentations [7]. CNN, on the other hand, excels in learning
hierarchical patterns from spectrograms, making it ideal for
capturing time-frequency dependencies. The combination of
these approaches ensures a balance between interpretability,
computational efficiency, and high classification accuracy, ul-
timately enhancing the robustness of the recognition system.

D. Hyperparameter Tuning

Hyperparameter tuning played a crucial role in optimizing
classifier performance. For SVM and kNN, a grid search was
conducted to determine the best kernel functions, distance met-
rics, and regularization parameters [5], leading to significant
accuracy improvements. CNN tuning focused on optimizing
the number of convolutional filters, dense layer units, dropout
rates, learning rate and optimizer type. A systematic evaluation
of epoch values (ranging from 10 to 30 in steps of 5) ensured
optimal convergence while preventing overfitting. This fine-
tuning process significantly enhanced model performance,
making the final system both accurate and efficient for real-
time deployment.

III. EXPERIMENTAL SETUP AND EVALUATION
A. Implementation Pipeline

The implementation pipeline follows a structured sequence
of steps to ensure optimal model training, evaluation, and
deployment. Fig. 6 outlines the key stages in the pipeline,
from data preparation to deployment. Each stage is designed
to handle specific tasks that contribute to the robustness of the
final model. The process begins with the dataset, followed by

Fig. 6. End-to-End Pipeline for Feature Extraction, Training, and Evaluation.

feature extraction, where MFCC-34, MFCC-38, Spectrograms,
and Mel-Spectrograms are extracted. These extracted features
are then processed by their respective classifiers—SVM and
kNN for MFCCs and CNN for Spectrogram-based features.
The models undergo hyperparameter tuning, followed by a
comprehensive performance evaluation. A key aspect of this
pipeline is the majority voting mechanism, which aggregates
the best-performing models to form the final optimized system.
Additionally, a validation process is performed using box-
and-whisker plots with 5-fold cross-validation repeated 20
times to ensure model consistency and robustness. The final
optimal model selection is based on the highest-performing
configurations (Table I).

For testing, 20% of the dataset is used, corresponding to 36
audio signals. These were not randomly chosen but carefully
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TABLE I
CLASSIFICATION ACCURACY [%] FOR 26,640 AUDIO DATASET

Classifier Number Metric Before After
of features Tuning Tuning

SVM MFCC-38 Accuracy 96.4 97.42
MFCC-34 Accuracy 96.36 97.1

kNN MFCC-38 Accuracy 93.38 95.53
MFCC-34 Accuracy 93.58 95.11

CNN Spectrogram Accuracy 96.46 97.01
Mel-Spectrogram Accuracy 95.83 97.65

selected to ensure generalization. Each class includes sounds
from all augmentation sets (original, noise injection, speed
variation, loudness variation, pitch shifting, time/frequency
masking), ensuring balanced representation. 6 audio signals
from each augmentation set were equally distributed, consider-
ing different distances from the microphone during recording.
This ensures the model generalizes well to real-world condi-
tions, making it suitable for deployment in assistive robotic
systems.

B. Performance Metrics

The performance evaluation of the optimized audio recog-
nition system was conducted using multiple classification
metrics to ensure a comprehensive assessment. The evaluation
included standard metrics such as accuracy, balanced accuracy,
classification report, confusion matrix, Matthews correlation
coefficient (MCC), Cohen’s kappa, and log loss. For each
model, predictions were compared against ground truth labels,
and confusion matrices were generated to visualize misclas-
sifications. Additionally, ROC curves and AUC scores were
computed to analyze the models’ ability to distinguish between
classes effectively.

IV. RESULTS AND DISCUSSION

Fig. 7 presents the impact of varying the number of filters
in the three convolutional layers on validation accuracy. Each
subplot corresponds to one of the convolutional layers, show-
ing the number of filters (X-axis) and the resulting validation
accuracy (Y-axis).

• The first subplot (left) shows how the accuracy changes
as the number of filters in the first convolutional layer
varies.

• The second subplot (middle) focuses on the second
convolutional layer.

• The third subplot (right) represents the third convolutional
layer.

After analyzing the trends, the optimal filter sizes were
determined as 32 for the first layer, 64 for the second layer,
and 128 for the third layer. These values provided the highest
validation accuracy before proceeding with further hyperpa-
rameter tuning.

Fig. 8 presents an overview of multiple experimental tri-
als conducted during hyperparameter tuning, allowing for a
detailed comparison of model performance across different
settings. Each point in the plot corresponds to a specific

Fig. 7. Validation Accuracy vs. Number of Filters/Conv 2D Layer.

trial where a unique combination of parameters—such as the
number of convolutional filters, dropout rates, learning rates,
and optimizer types—was evaluated.

Based on the insights gained from this analysis, the final
CNN model configuration for further evaluation will use:
Number of filters: 32 on 1st layer, 64 on 2nd layer, 128 on 3rd
layer; Dense layer: 256; Dropout rate: 0.5; Optimizer: Root
Mean Square Propagation; Learning rate: 0.001; Epochs: 15
With these optimized hyperparameters, the final model was
implemented following the structured pipeline outlined earlier.
The dataset was split into 80% for training and 20% for testing,
ensuring a robust evaluation of the model’s generalization
capabilities.

The ROC curve plots from Fig. 9 the True Positive Rate
(TPR) against the False Positive Rate (FPR), illustrating the
classifier’s performance at different thresholds for kNN with
MFCC-38. The AUC score of 0.9931 indicates an excellent
classification performance, as an AUC close to 1 suggests
the model is highly capable of distinguishing between pos-
itive and negative instances of the ”algocalmin” class with
minimal errors. kNN with MFCC-34 achieved an accuracy
of 94.76% and a balanced accuracy of 94.43%, while kNN
with MFCC-38 slightly improved to 94.91% accuracy and
94.53% balanced accuracy. Additionally, MCC and Cohen’s
Kappa values were consistently high for both kNN models,
with MFCC-38 providing marginally better stability and lower
log loss, indicating improved probability estimates. For SVM
models, SVM with MFCC-34 achieved 94.33% accuracy and
94.14% balanced accuracy, whereas SVM with MFCC-38
further improved performance to 95.46% accuracy and 95.23%
balanced accuracy. MCC and Cohen’s Kappa values confirm
strong consistency in classification, with SVM outperforming
kNN, particularly in handling complex feature variations. The
variability in accuracy scores across 20 repeated 5-fold cross-
validations, showing the consistency and performance of the
SVM classifier when using 38 MFCC features are in Fig. 10.
The green triangles represent the mean accuracy for each
repeat, with whiskers indicating the range of scores.

V. CONCLUSION
This study successfully developed an optimized audio

recognition system for assisting elderly individuals in iden-
tifying spoken medicine names in Romanian. By evaluat-
ing MFCC-38, MFCC-34, and Spectrogram-based features,
along with SVM, kNN and CNN, we identified the most
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Fig. 8. All Trials Performance Comparison.

Fig. 9. ROC Curve for Algocalmin Class – Model Performance Evaluation.

effective configurations for high-accuracy speech recognition.
After hyperparameter tuning, the best results were 97.65% for
CNN (Mel-Spectrogram), 97.42% for SVM (MFCC-38), and
95.53% for kNN (MFCC-38). The final implementation of the
optimal models where we take care what samples to be tested
to 98.02% for CNN, 97.12% for SVM, and 96.2% for kNN,
demonstrating the effectiveness of the selected features and
tuning process. The final models were assessed using multiple
performance metrics: balanced accuracy, classification reports,
MCC, Cohen’s kappa, log loss, and 5-fold cross-validation
(repeated 20 times). The box-and-whisker plot analysis for
SVM confirmed the model’s stability across multiple runs.

Future enhancements could include expanding the dataset
with more diverse speaker variations to improve generaliza-
tion and deploying the system in real-world environments to
evaluate robustness in practical scenarios.
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