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Abstract—The recursive least-squares (RLS) adaptive filtering
algorithm is frequently used in system identification problems.
The popularity of this algorithm is mainly related to its fast
convergence rate. In this context, the main parameter that con-
trols the convergence features of the RLS filter is the forgetting
factor. On the other hand, in noisy environments, the robustness
of the algorithm can be improved by using an appropriate
regularization term. In this paper, we propose a regularized RLS-
type algorithm, by considering a linear state model and following
the weighted least-squares optimization criterion. The resulting
optimal regularization parameter also includes a specific term
related to the model uncertainties, which is estimated in a prac-
tical manner within the algorithm. Simulation results obtained
in the framework of echo cancellation support the performance
features of the regularized RLS algorithm, which could represent
an appealing solution for robust system identification.

Index Terms—Adaptive filter, recursive least-squares (RLS)
algorithm, regularization, robustness, system identification.

I. INTRODUCTION

The recursive least-squares (RLS) algorithm [1] is a popular
tool in many adaptive filtering applications. Due to its fast
convergence rate and robustness to the character of input data
(in terms of correlation), it is widely involved in a variety
of frameworks, e.g., see [2]–[5], among many others. In this
context, an important category of applications is related to
system identification problems, where echo cancellation rep-
resents one of the most challenging cases. This is an interesting
combination between a system identification scheme (aiming
to model the echo path) and an interference cancellation
configuration (targeting to recover the near-end signal) [6].

There are many interesting versions of the RLS algorithm,
using different theoretical approaches and filter structures.
Among them, the exponentially weighted RLS algorithm im-
plemented using a transversal filter structure [1] is usually con-
sidered as the conventional version and common benchmark.
Its overall performance is mainly controlled by the so-called
forgetting factor, which is a positive term (smaller than one)

that “weights” the contribution of the error signal involved
into the cost function. Setting the forgetting factor leads to
a compromise between the main performance criteria. For
example, in echo cancellation, a large value leads to good
accuracy of the echo path estimate, but affects the tracking
capabilities. Nevertheless, even when using very large values
of the forgetting factor, there is an inherent limitation of the al-
gorithm related to its robustness in the presence of the near-end
signal. Thus, a robust system identification is problematic in
noisy environments (with high and nonstationary background
noise) or in double-talk scenarios (when the speakers talk
simultaneously) [2], [6], and it cannot be achieved using only
the forgetting factor as the control parameter.

In order to improve the robustness of the RLS algorithm in
such challenging scenarios, a natural approach is to consider
a proper regularization term within the cost function. There
are many interesting solutions to this problem, which were
designed in the framework of different applications, e.g.,
see [3], [5], [7]–[13], and the references therein. However,
most of the so-called regularized RLS algorithms developed
in this context require some a priori information about the
system/environment or need some additional parameters that
are not always easy to estimate/tune in real-world scenarios.

In this paper, we derive a more practical regularized RLS-
type algorithm, which relies on a linear state model and
exploits the weighted least-squares optimization criterion. The
regularization parameter of the proposed algorithm includes
the contribution of both the external noise and the model
uncertainties, thus leading to improved robustness in terms
of system identification. In addition, it does not require any
additional information related to the environment.

Following this introduction, the proposed regularized RLS
algorithm is presented in Section II. Its performance is sup-
ported by the experimental results provided in Section III,
in the framework of echo cancellation. Finally, Section IV
concludes this work.
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II. PROPOSED REGULARIZED RLS ALGORITHM

In the general framework of a single-input single-output
(SISO) system identification problem, the main goal is to
model/estimate an unknown system characterized by the time-
varying impulse response h(t), with L coefficients, where t
is the discrete-time index. To this purpose, at each time index
t, a reference signal, d(t), obtained at the system output, is
considered to be available, together with the last L samples
of the input sequence, x(t), which are grouped into the vector
x(t) =

[
x(t) x(t− 1) . . . x(t− L+ 1)

]T
, where the

superscript T stands for transposition. In this context, let us
consider the linear state model:

d(t) = hT (t)x(t) + v(t), v(t) ∼ N [0, rv(t)] , (1)
h(t) = h(t− 1) + u(t), u(t) ∼ N [0,Ru(t)] , (2)

where v(t) is a zero-mean additive noise (uncorrelated to
the input signal), which corrupts the output of the unknown
system, and h(t) follows a simplified first-order Markov
model, with u(t) being a zero-mean white Gaussian noise
signal vector [uncorrelated to h(t − 1) and v(t)]. Related to
the model from (1) and (2), rv(t) and Ru(t) are the variance
and covariance matrix of v(t) and u(t), respectively, while
h(t) is the state system (of length L).

One possible way to solve the problem of estimating h(t) is
via the least-squares (LS) approach. In this context, denoting
by ĥ(t) the estimate of h(t), provided by an adaptive filter,
the weighted LS criterion can be written as

J0

[
ĥ(t)

]
=

t∑
i=1

λt−i

[
d(i)− ĥT (t)x(i)

]2
rv(t)

+
1

L

t∑
i=1

λt−i
[
ĥ(t)− h(i− 1)

]T
R−1

u (t)
[
ĥ(t)− h(i− 1)

]
,

(3)

where λ (0 ≪ λ < 1) is known as the forgetting factor.
The second term from the right-hand side of (3) acts like
a regularization component, which is related to the model
uncertainties from (2). Assuming that Ru(t) = ru(t)I, where
the variance ru(t) captures the uncertainties in h(t) and I
denotes the identity matrix (of size L× L), the cost function
from (3) can be equivalently expressed as

J
[
ĥ(t)

]
=

t∑
i=1

λt−i
[
d(i)− ĥT (t)x(i)

]2
+

rv(t)

Lru(t)

t∑
i=1

λt−i
[
ĥ(t)− h(i− 1)

]T [
ĥ(t)− h(i− 1)

]
= rd(t)− 2ĥT (t)rxd(t) + ĥT (t)Rx(t)ĥ(t)

+
rv(t)

Lru(t)

[
ℓ(t)ĥT (t)ĥ(t)− 2ĥT (t)

t∑
i=1

λt−ih(i− 1)

+
t∑

i=1

λt−ihT (i− 1)h(i− 1)

]
, (4)

where

rd(t) =
t∑

i=1

λt−id2(i) = λrd(t− 1) + d2(t), (5)

rxd(t) =

t∑
i=1

λt−ix(i)d(i) = λrxd(t− 1) + x(t)d(t), (6)

Rx(t) =

t∑
i=1

λt−ix(i)xT (i) = λRx(t− 1) + x(t)xT (t),

(7)

ℓ(t) =
t∑

i=1

λt−i = λℓ(t− 1) + 1. (8)

In (4), for t large enough, the term
∑t

i=1 λ
t−ih(i − 1) can

be approximated to zero. Then, from the minimization of
J

[
ĥ(t)

]
with respect to ĥ(t), we obtain the normal equations:

[Rx(t) + δ(t)I] ĥ(t) = rxd(t), (9)

where

δ(t) =
ℓ(t)

L
η(t) (10)

acts like a regularization parameter, which includes the noise-
to-uncertainty ratio (NUR), defined as

η(t) =
rv(t)

ru(t)
. (11)

The optimal solution of (9) results in

ĥ(t) = [Rx(t) + δ(t)I]
−1

rxd(t), (12)

which can be recursively obtained using an RLS-type algo-
rithm. To this purpose, similar to (9), let us consider the normal
equations from time index t− 1, i.e.,

[Rx(t− 1) + δ(t− 1)I] ĥ(t− 1) = rxd(t− 1). (13)

Next, multiplying by λ on both sides of (13) and using the
updates (6) and (7), the previous normal equations become[
Rx(t)− x(t)xT (t) + δ(t)I

]
ĥ(t− 1) = rxd(t)− x(t)d(t),

(14)

also assuming that the regularization parameter is slowly
varying from one time index to another, so that, for λ close
to 1, we can use the approximation δ(t) ≈ λδ(t − 1) at this
point. Thus, (14) can be further developed as

[Rx(t) + δ(t)I] ĥ(t− 1) + x(t)e(t) = rxd(t), (15)

where

e(t) = d(t)− xT (t)ĥ(t− 1) (16)

is the a priori error signal. Multiplying (to the left) both sides
of (15) with [Rx(t) + δ(t)I]

−1 (considering that this matrix
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is invertible) and using (12), together with (10) and (11), the
update of the regularized RLS-type algorithm becomes

ĥ(t) = ĥ(t− 1) +

[
Rx(t) +

ℓ(t)

L
· rv(t)
ru(t)

I

]−1

x(t)e(t).

(17)

In order to further simplify (17), for t large enough, we
can use the approximation ℓ(t) ≈ 1/(1 − λ), which results
based on (8). Also, if we commonly set λ = 1 − 1/(KL),
with K ≥ 1, for L ≫ 1 (which is usually the case in echo
cancellation), we obtain ℓ(t)/L ≈ K.

Most important, the variances required in (17) should be es-
timated in a simple and practical manner. First, we focus on the
additive noise variance, rv(t). Of course, v(t) is not available;
however, some related information can be extracted from the
error signal, e(t). The reason is that in system identification
scenarios, the goal of the adaptive algorithm is not to drive the
error signal to zero, since this would introduce noise into the
filter estimate. Instead, we should recover the noise signal from
the error of the adaptive filter, after this one converges to its
solution, so that rv(t) ≈ re(t), where re(t) = E[e2(t)], with
E[·] denoting the mathematical expectation. Consequently, we
can use the recursive estimation:

r̂v(t) = λr̂v(t− 1) + (1− λ)e2(t), (18)

with r̂v(0) = 0. Similar estimation strategies were previously
used in the context of RLS algorithms with variable forgetting
factors [14], [15].

Second, the model uncertainties, ru(t), should be estimated.
Using the adaptive filter estimates from time indices t and
t − 1 in (2), we can write ĥ(t) − ĥ(t − 1) ≈ u(t), while
∥u(t)∥2 ≈ Lru(t), for L ≫ 1, with ∥·∥ denoting the Euclidean
norm. As a result, using a similar estimator as in (18), the
model uncertainties can be recursively evaluated as

r̂u(t) = λr̂u(t− 1) + (1− λ)

∥∥∥ĥ(t)− ĥ(t− 1)
∥∥∥2

L
, (19)

with r̂u(0) = ϵ, where ϵ is a small positive constant, which
should be used for the initialization [since this estimate appears
at the denominator in (17)]. At this point, we should notice
that a different weighting factor could be used (instead of λ)
in (18) and (19), e.g., γ = 1 − 1/(QL), with Q ≥ 1 and
Q ̸= K. Nevertheless, for the sake of simplicity, the forgetting
factor λ is also used to this purpose. Finally, for numerical
reasons [when dealing with very small values of r̂u(t)], it is
recommended to add a very small positive constant (ε > 0) to
the denominator of the ratio from (17).

Concluding, under these circumstances, the filter update
from (17) results in

ĥ(t) = ĥ(t− 1) +

[
Rx(t) +K

r̂v(t)

ε+ r̂u(t− 1)
I

]−1

x(t)e(t).

(20)

It can be noticed that different time indices are used in the
estimated NUR, as compared to (17), i.e., r̂v(t) and r̂u(t−1),

TABLE I
WR-RLS ALGORITHM

Parameters:

λ = 1−
1

KL
, K ≥ 1, ε > 0

Initialization:
Rx(0) = 0L×L, ĥ(0) = 0L×1, r̂v(0) = 0, r̂u(0) = ϵ, ϵ > 0

For time-index t = 1, 2, . . . :

x(t) =
[

x(t) x(t− 1) · · · x(t− L+ 1)
]T

Rx(t) = λRx(t− 1) + x(t)xT (t)

e(t) = d(t)− xT (t)ĥ(t− 1)

r̂v(t) = λr̂v(t− 1) + (1− λ)e2(t)

ĥ(t) = ĥ(t− 1) +

[
Rx(t) +K

r̂v(t)

ε+ r̂u(t− 1)
I

]−1

x(t)e(t)

r̂u(t) = λr̂u(t− 1) + (1− λ)

∥∥∥ĥ(t)− ĥ(t− 1)
∥∥∥2

L

respectively. The explanation relies on the fact that e(t) is
available before the filter update, so that we can use r̂v(t) from
(18), while ĥ(t) is not yet available for the estimation of r̂u(t)
in (19), which requires using the estimate from the previous
time index, r̂u(t − 1). Nevertheless, r̂v(t) also depends on
ĥ(t− 1), which appears in e(t) from (16). Summarizing, the
proposed regularized RLS algorithm based on the weighted
LS criterion, namely WR-RLS, is provided in Table I.

Several remarks can be outlined related to the computational
complexity of this algorithm, which contains several challeng-
ing operations. First, the update of the matrix Rx(t) can be
efficiently performed by taking advantage of its symmetry
and the time-shift property of the input vector, x(t). As a
result, only the first column (and the first row) of the matrix
x(t)xT (t) should be evaluated in each iteration, i.e., x(t)x(t)
(and its transpose), while its bottom-right (L − 1) × (L − 1)
block is identical to the top-left (L − 1) × (L − 1) block
of x(t − 1)xT (t − 1). Second, the direct matrix inversion
required within the filter update is computationally expensive,
especially for large values of L. Alternatively, efficient iterative
techniques could be involved to solve this issue, like the di-
chotomous coordinate descent (DCD) method [16], [17], with
a computational complexity proportional to O(L). In other
words, the filter update is rewritten as ĥ(t) = ĥ(t−1)+∆ĥ(t),
while the update term (namely the increment) results as the
iterative solution of an auxiliary set of normal equations, i.e.,[
Rx(t) +K r̂v(t)

ε+r̂u(t−1)I
]
∆ĥ(t) = rxe(t), where rxe(t) =

λrxe(t − 1) + x(t)e(t) is the so-called residual vector [16].
The derivation of the DCD-based version of the WR-RLS
algorithm is beyond the scope of this paper and it is presented
in a subsequent publication [18]. The main goal of the current
work remains the development and investigation of the basic
version of the proposed WR-RLS algorithm, together with its
performance related to robust system identification.
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Fig. 1. Normalized misalignment of the proposed WR-RLS algorithm using
λ = 1 − 1/(KL), with different values of K and L = 128: (a) without
echo path change and (b) with echo path change (after 8 seconds). The input
signal is a speech sequence and SNR = 20 dB.

III. SIMULATION RESULTS

The experimental framework is based on an echo can-
cellation scenario, aiming to identify a network echo path
from the ITU-T G168 Recommendation [19]. To this purpose,
the fourth cluster of coefficients (b4) from [19] is selected,
with the length L = 128. The impulse response of the echo
path, h(t), is obtained by adding a white Gaussian noise to
b4, with the variance ξ ∥b4∥2, using ξ = 10−4. The input
signal (i.e., the far-end signal) is a speech sequence from a
female voice, with a sampling rate of 8 kHz. The background
noise that corrupts the output of the echo path is white and
Gaussian, with the signal-to-noise ratio (SNR) set to 20 dB.
The normalized misalignment (in dB) is used as performance
measure, being computed as 20log10

∥∥∥h(t)− ĥ(t)
∥∥∥ / ∥h(t)∥.

In the first set of experiments, the influence of the forgetting
factor on the performance of the proposed WR-RLS algorithm
is assessed. This is performed by varying the value of K,
since λ = 1 − 1/(KL). Clearly, larger values of K lead to
larger values of λ (i.e., closer to one). As we can notice in
Fig. 1(a), larger values of the forgetting factor are suitable
for a better accuracy of the estimate provided by the adaptive
filter, since the misalignment is decreasing when the value
of K (or λ) increases. This is an expected result, according
to the common knowledge about the exponentially weighted
RLS-type algorithms. On the other hand, higher values of λ
slow down the tracking capabilities of these algorithms, as also
supported in Fig. 1(b). Here, an echo path change is introduced
in the middle of simulation, by changing the value of ξ to
10−2. As expected, the higher the forgetting factor, the slower
the tracking reaction. Nevertheless, the WR-RLS algorithm
can achieve a reasonable compromise in terms of these two
performance criteria, i.e., accuracy versus tracking.

The second experiment is dedicated to a common scenario
in echo cancellation applications, where the background noise
could vary in time. The conventional (exponentially weighted)
RLS algorithm [1] is used as a benchmark. Its performance is
basically influenced by the value of the forgetting factor, so
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Fig. 2. Normalized misalignment of the conventional RLS algorithm using
λ = 1−1/(KL), with different values of K and L = 128, and the proposed
WR-RLS algorithm using λ = 1 − 1/(5L). The input signal is a speech
sequence and the SNR varies from 20 dB to 10 dB between time 4 to 6
(seconds), and from 20 dB to 0 dB between time 10 to 12 (seconds).

different values of λ are considered in this experiment (also
by varying the value of K). The WR-RLS algorithm uses
λ = 1 − 1/(5L). Two bursts of background noise variation
are simulated, by first decreasing the SNR from 20 dB to
10 dB between time 4 to 6 seconds, then from 20 dB to
0 dB between time 10 to 12 seconds. The results are reported
in Fig. 2, where we can notice the good robustness of the
proposed WR-RLS algorithm in both situations. On the other
hand, the conventional RLS algorithm is significantly affected
by the SNR variations, for all the values of the forgetting factor
used in this experiment. In order to improve its accuracy and
robustness, the value of λ should be increased, which can
result in reducing the tracking capabilities of the algorithm.

Maybe the most challenging scenario in echo cancellation
is the double-talk situation, when the speakers talk at the same
time. In this case, the near-end speech acts like a large level
of nonstationary disturbance, which can significantly bias the
adaptive filter estimate. Usually a double-talk detector (DTD)
is involved in such scenarios [2], [6], detecting the presence
of the near-end speech and freezing (or slowing down) the
adaptation during the double-talk periods. However, this is not
an easy task in practice, since the algorithm behind the DTD
has some inherent latencies, while it can also trigger false
alarms or miss detections. Due to these reasons, the adaptive
algorithms used for echo cancellation should be as robust as
possible in the presence of double-talk.

In this context, the last experiment considers a double-talk
scenario without using any DTD, which represents a very
challenging situation for the adaptive algorithm. The proposed
WR-RLS is compared to the conventional RLS algorithm,
but also to the variable-regularized RLS (VR-RLS) algorithm
from [10], which evaluates its time-varying regularization
parameter as a function of the estimated SNR. This is also
considered a practical algorithm, since it does not require any
additional parameter related to the system or the environment.
All the algorithms use different values of their forgetting
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Fig. 3. Normalized misalignment of the conventional RLS, VR-RLS [10], and
proposed WR-RLS algorithms, using λ = 1−1/(KL), with different values
of K and L = 128. The far-end (input) signal is a speech sequence, SNR =
20 dB, and the near-end speech (double-talk scenario) appears between time
2 to 4 (seconds) and between time 8 to 12 (seconds).

factor, λ = 1 − 1/(KL), which are selected by varying the
values of K. Two periods of double-talk are simulated, by
using a male voice at the near-end (with different intensities),
between time 2 to 4 seconds and between time 8 to 12 seconds,
respectively. The results are provided in Fig. 3. As we can
notice, the WR-RLS algorithm is very robust during both
double-talk periods, while its accuracy is improving for larger
values of the forgetting factor. The VR-RLS algorithm [10]
also has a reasonable robust behavior during double-talk, out-
performing the conventional RLS algorithm. Despite the large
values of the forgetting factor, this conventional benchmark
cannot cope with the double-talk scenario, while also facing
a slower recovery when λ (or K) increases. Overall, the
estimated NUR within the regularization parameter of the WR-
RLS algorithm provides a reliable measure during double-talk
periods, as shown in Fig. 4. Basically, the ratio r̂v(t)/r̂u(t−1)
increases in the presence of the near-end speech, thus reducing
the update term of the algorithm and, consequently, slowing
down its adaptation, which represents the desired behavior.

IV. CONCLUSIONS

In this paper, we have developed a regularized RLS-type
algorithm, using the weighted LS optimization criterion and
including a regularization component (based on the model
uncertainties) into the cost function. The regularization term
of the proposed WR-RLS algorithm contains the NUR, which
reflects the influence of both the external noise and the model
uncertainties. This is estimated in a practical manner within
the algorithm, without any a priori information regarding the
system/environment. Thus, the WR-RLS algorithm is efficient
for robust system identification, as indicated by the echo
cancellation experiments, including the double-talk scenario.
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