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Abstract—In this paper, we revisit the hybrid DA-MUSIC
model, which combines the classical MUSIC algorithm with deep
neural networks to improve the estimation of direction of arrival
(DoA). By incorporating Hermitian and positivity constraints
into the model covariance matrix, we achieve a performance
enhancement. Additionally, we introduce a novel data-driven
model that employs recurrent neural networks and multilayer
perceptrons, demonstrating superior performance compared to
DA-MUSIC across various scenarios.

Index Terms—DoA estimation, data-driven, recurrent neural
networks

I. INTRODUCTION

Direction-of-Arrival (DoA) estimation has been an active
research area in sensor array processing for several decades.
Three distinct approaches are employed to tackle DoA esti-
mation problems: Model-Based (MB), Data-Driven (DD), and
Hybrid.

The classical MB approaches involve relationship among
quantities, such as the geometry of the sensor array, or
statistical assumptions about the model. Among them, MUSIC
[1] is a popular algorithm being applicable to many types
of arrays. For uniform linear arrays, the Root-MUSIC [2] or
ESPRIT [3] algorithms are often preferred since they avoid the
1D peaks finding procedure in the MUSIC pseudo spectrum.
For a large number of sensors and snapshots, the performance
of MUSIC approaches the Cramer-Rao bound for uncorrelated
signals [4]. However, subspace methods show limitations such
as a lack of reliability for correlated source signals.

The Data-Driven (DD) approach leverages artificial neural
networks for DoA estimation. Recent studies have used fully
connected neural networks [5], convolutional neural networks
(CNNs) [6], [7] for this task. While these models achieve
strong performance, they require large training datasets, high
computational resources, and often lack interpretability.

The hybrid models are gray-box models that integrate ele-
ments from both the MB and DD approaches. As an example,
[8] uses multiple CNNs to learn the MUSIC pseudospectrum
using the empirical covariance matrix. Using the pseudo-
spectrum as a label means that this approach continues to
face similar challenges as MUSIC in certain scenarios, such
as with coherent sources. DA-MUSIC [9], [10] is a state of
the art hybrid model that achieves this goal by combining
the recurrent neural network (RNN) with the classical MUSIC
algorithm. It has demonstrated its superiority over the MB and

DD approaches in various challenging conditions, including
situations with an unknown number of sources, coherent
sources, or broadband signals.

The original DA-MUSIC model estimates a surrogate co-
variance matrix without enforcing structural constraints. Our
contributions in this paper are:

1) Incorporating Hermitian and positivity constraints on the
estimated covariance matrix, improving performance.

2) Introducing a novel deep learning model that outper-
forms DA-MUSIC while maintaining computational ef-
ficiency.

Our proposed model has been proven to surpass the DA-
MUSIC in the presence of perturbed sensor positions, coherent
sources and unknown mutual coupling.

II. PROBLEM FORMULATION

We consider a scenario where D narrowband plan waves are
received on M sensors. Let s(t) ∈ CD denote the vector of
transmitted signals and x(t) ∈ CM as the vector of observed
signals. They are connected by the following equation:

x(t) = CA(θ)s(t) + n(t), (1)

where n(t) ∈ CM is an additive white Gaussian noise, C
the mutual coupling matrix, A(θ) = [a(θ1) a(θ2) ... a(θD)]
the matrix formed by D steering vectors a(θi) and θi is the
DoA of the ith source for i = 1 : D.

Letting (xi, yi) for i = 1 : M denote the position of ith

sensor and λ the signal wavelength. We have:

a(θ) =


exp

(
−j 2π

λ (x1 sin θ + y1 cos θ)
)

exp
(
−j 2π

λ (x2 sin θ + y2 cos θ)
)

...
exp

(
−j 2π

λ (xM sin θ + yM cos θ)
)
 . (2)

For instance a uniform linear array (ULA) with inter-
element spacing d, we set xi = (i − 1)d and yi = 0 for
i = 1 : M . Alternatively, for a uniform circular array (UCA)
where array elements are distributed uniformly on a circle of
radius r, we set xi = r cos 2π(i−1)

M and yi = r sin 2π(i−1)
M for

i = 1 : M .
The goal of the DoA estimation problem is to de-

termine the directions θ̂ through the observation signals
x(1),x(2), ...,x(T ) ∈ CM .
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III. MUSIC ALGORITHM

The MUSIC algorithm leverages the eigendecomposition of
the empirical covariance matrix R̂x of observed signals:

R̂x =
1

T

T∑
t=1

x(t)x(t)H = UDUH . (3)

Where D is a diagonal matrix with its diagonal entries
arranged in descending order. The last M − D columns of
U , form a matrix EN that represents the noise subspace. The
columns of EN are orthogonal to the space spanned by the
columns of A(θ). Subsequently, the pseudospectrum P (θ) is
computed across the discretized grid given by:

P (θ) =
1

∥EH
Na(θ)∥2

. (4)

The algorithm then identifies the D highest peaks of this
pseudo-spectrum P (θ) computed on a discretized grid. Es-
timated DoAs are inferred by associating angles with these
identified peaks.

IV. DA-MUSIC

DA-MUSIC algorithm is a hybrid approach that combines
the classical subspace methods and with deep learning tech-
niques to improve DoA estimation. Unlike conventional MU-
SIC, DA-MUSIC replaces the empirical covariance estimation
step with data-driven model based on a kind of RNN named
GRU [11]. The rationale for this approach is that empirical co-
variance estimation may fail to capture sufficient information
when the number of snapshots is limited or when the sources
are coherent. Then, the steps of eigendecomposition, selection
the eigenvectors corresponding to the M −D smallest eigen-
value, and calculation the pseudospectrum from the selected
eigenvectors are left unchanged. Finally, the conventional peak
location identification is replaced by a multi-layer perceptron
to enable the backpropagation. The computational flow of DA-
MUSIC is described in Figure 1.

Inspired by [12], the authors of DA-MUSIC suggest using
the Root Mean Square Periodic Error (RMSPE) loss function
instead of the traditional RMSE. The RMSPE is defined as:

RMSPE(θ, θ̂) = min
P∈PD

(
1

D
∥modπ(θ − P θ̂)∥2

) 1
2

, (5)

Here, PD denotes the set of all permutation matrices of size
D ×D.

V. DIRECTION OF ARRIVAL IN THE PRESENCE OF MUTUAL
COUPLING

The MUSIC algorithm assumes that each antenna element
operates independently without interference from neighboring
elements. However, in real-world scenarios, mutual coupling
(MC) occurs, leading to undesired interactions between sen-
sors, which distorts the received signals and degrades DoA
estimation performance. This section recalls the modified

MUSIC algorithm as proposed in [13], [14], [15], for DoA
estimation with ULA/UCA under mutual coupling.

If MC matrix C is known, the modified MUSIC spectrum
takes the following form:

P (θ) =
1

∥EH
NCa(θ)∥2

. (6)

However, in practical applications, C is often unknown. In
such cases, definition (6) is replaced by:

P (θ) =
1

min
C∈Cα

∥EH
NCa(θ)∥2

. (7)

Where Cα = {C ∈ CM×M |∥C∥F = α} for some positive
constant α. Note that in (7), C depends on θ. The optimization
problem in the denominator can be solved analytically by
reformulating it as a simple constrained quadratic optimization
problem when C is assumed to be Toeplitz (ULA case) or
circulant Toeplitz (UCA case). Letting K = M for the ULA
case and K = ⌊M/2 + 1⌋ for the UCA case. Consider the
matrix T (θ) ∈ CM×K defined as follows:

1) If the array is ULA,

T (θ)ij = a(θ)i+j−11{i+j≤M+1} (8)
+a(θ)i−j+11{i≥j≥2},

with 1{P} = 1 if P is true and 1{P} = 0 otherwise.
2) If the array is UCA,

T (θ)ij = a(θ)i+j−11{i+j≤M+1} (9)
+a(θ)i−j+11{i≥j≥2}

+a(θ)M+1+i−j1{i<j≤l}

+a(θ)i+j−M−11{2≤i≤l, i+j≥M+2},

with l = ⌊(M + 1)/2⌋.
Here above, T (θ) is designed such that there exists a vector

c satisfying Ca(θ) = T (θ)c. Without loss of generality, we
assume that cHc = 1. We further assume that MC effects
between two sufficiently far sensors are negligible, implying
cL = cL+1 = · · · = cK = 0 for some index L ≤ M−D. This
is a necessary condition for solving the optimization problem
in (7). We then denote D(θ) the first L columns of T (θ).
Then the denominator of (7) rewrites:

min
cHc=1

∥EH
NT (θ)c∥2 = λmin (Q(θ)) , (10)

where Q(θ) = D(θ)HENEH
ND(θ) and λmin(Q(θ)) is the

minimal eigenvalue of Q(θ). Finally, the modified MUSIC
spectrum is expressed as:

P (θ) =
1

λmin (Q(θ))
. (11)

Note that the modified spectrum is always well-defined due
to the assumption that cL = cL+1 = · · · = cK = 0 for some
index L ≤ M − D, which ensures that λmin(Q(θ)) remains
strictly positive. And finally, the peaks finding step remains
unchanged.
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Fig. 1. DA-MUSIC architecture
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Fig. 2. Proposed DD model

VI. CONTRIBUTION

A. Modified DA-MUSIC

One issue with DA-MUSIC is that the surrogate covari-
ance estimated from the RNN lacks the inherent properties
typical of a covariance matrix, such as Hermitian structure
and positivity. We therefore propose to enforce these two
special structures to the covariance matrix by adding one
transformation f(X) = XXH to the matrix X̃ before taking
the eigendecomposition (i.e, just before the fifth block, shown
in purple, in the Figure 1)

In the case of ULA, the theoretical covariance matrix not
only has Hermitian and positive structure but it also has a
Toeplitz structure. A further step would be to enforce both
Hermitian and Toeplitz structures on the covariance matrix.
But, it appears that this results in slightly inferior performance
compared to the original DA-MUSIC method. One possible
explanation is that imposing the Toeplitz constraint strongly
reduces the number of degrees of freedom of the covariance
matrix. In particular, degradations such as mutual coupling or
sensor positioning errors also degrade the Toeplitz properties
structure that should not be enforced in such situations.

B. Proposed DD model

Although DA-MUSIC has already demonstrated superior
performance compared to existing MB and DD models, we
aim to further enhance its capabilities as discussed above. We
also propose a novel yet simple DD model that combines an
RNN and MLP as depicted in Figure 2. In the case where

we have few sensors, the proposed model maintains a level of
complexity comparable to that of DA-MUSIC while achieving
superior performance compared to the aforementioned modi-
fied DA-MUSIC approach. Another advantage of this approach
is that it eliminates the need for an eigendecomposition step,
which relies on an iterative algorithm.

C. Computational Complexity

The computational complexity of the original DA-MUSIC
and our proposed modified version is nearly identical for a
small number of sensors (e.g., M = 8, 16 or 32). However,
for larger values of M (e.g., M = 500 or 1000), the
modified version offers slightly improved computation time.
This improvement stems from the fact that the eigenvalue
decomposition of a Hermitian matrix is over 10 times faster
than that of a general matrix of the same size, as verified using
PyTorch [16].

The computational complexity of our proposed DD model is
also comparable to that of the original DA-MUSIC. Although
the DD model employs O(M4) neurons in the final layers,
significantly more than the O(M2) neurons used in DA-
MUSIC, it benefits from full parallelization. Unlike eigende-
composition, which requires a sequential algorithm, our model
eliminates this step, enabling efficient parallel execution.

Finally, computing the loss function defined in 5 may
appear computationally intractable for large values of D, as
a brute-force approach would involve a factorial complexity
O(D!). However, more efficient solutions exist. In particular,
the Hungarian algorithm, originally proposed in [17], [18], can
solve this type of matching problem with a significantly lower
complexity of O(D3).

VII. PERFORMANCE EVALUATION

In the first experiment, we evaluated the performance of the
algorithms under ideal conditions. As in [10], the experiment
used a uniform linear array with M = 8 half-wavelength
spaced elements. We considered D = 3 narrowband, incoher-
ent sources and used T = 200 snapshots. The data for learning
were generated as in 1. Specifically, for each t, s(t) and n(t)
were sampled from complex circular Gaussian distributions
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Fig. 3. Ideal conditions, ULA with M = 8 sensors, D = 3 sources, T = 200
snapshots

with suitable variances to match the predefined SNR. Then,
for each source d, the incident angle θd was sampled from the
uniform distribution U

(
−π

2 ,
π
2

)
, ensuring a minimum gap of

0.1 rad between any two angles. This procedure was repeated
multiple times to generate a dataset of 20×103 samples, which
was then split into a training set of 16 × 103 samples and a
validation set of 4× 103 samples. All neural network models
were implemented using PyTorch [16] and trained with the
Adam optimizer [19] for 200 epochs, with a batch size of 512
and a learning rate of 10−3. Each model was trained multiple
times, with a newly generated dataset for each training to
select the set of parameters that achieved the best performance.
Finally, we evaluated the performance of each model using
a test set of 105 samples, generated following the same
principles as the training set. The result of this experiment is
depicted in figure 3. We can easily see that by incorporating
the positive Hermitian constraint to the surrogate covariance
matrix, DA-MUSIC now performs slightly better. In addition,
our proposed DD model, not only beats the original and
modified DA-MUSIC, but also the classical MUSIC in the low
SNR scenario. Finally, experiments demonstrate that our DD
model is four times faster than DA-MUSIC and its modified
version and 1.5 times faster than classical MUSIC.

In the second experiment, we evaluated the performance of
the models in the presence of coherent sources. Most settings
remained the same as in the first experiment, except that in
this case we model the coherency of the source signal by
taking all entries equal in s(t) for every t. The results of
this experiment are illustrated in figure 4. It can be observed
as expected that signal coherency degrades the estimation
quality of classical MUSIC. In contrast, deep learning methods
demonstrate significant advantages, maintaining consistently
low RMSPE even in low SNR scenarios and outperforming
classical MUSIC in the whole SNR range, even with spatial
filtering [20]. We can also see that our modified version of
DA-MUSIC brings a small gain compared to the original DA-
MUSIC.

In the third experiment, we evaluated the performance of

Fig. 4. Coherent sources, ULA with M = 8 sensors, D = 3 sources,
T = 200 snapshots

Fig. 5. Perturbed ULA with M = 8 sensors, D = 3 sources, T = 200
snapshots

the models under sensor position perturbations. While most
settings were identical to those in the first experiment, the
key difference was that, in this case, the sensor positions in
the ULA were perturbed by uniform noise along the array’s
direction, and the perturbation values were fixed for the entire
dataset and remained unknown to the algorithms. The training
and testing procedures were unchanged.The results of this
experiment are presented in Figure 5, obtained by averaging
the outcomes from 20 different perturbation configurations.
We observe that the MUSIC algorithm failed to resolve the
DoA even at high SNR levels. In contrast, the data-driven
models remained robust in this scenario. Our proposed mod-
ified version of DA-MUSIC provided a slight improvement
over the original, while our proposed DD model continued to
outperform both versions of DA-MUSIC.

In the fourth experiment, we evaluated the performance of
algorithms under the mutual coupling scenario. Most settings
were unchanged from the first experiment, except that we use
a uniform circular array of M = 8 sensor distributed along
a circle of radius λ/2. We also assumed in this experiment
that the mutual coupling matrix as a Toeplitz and circulant
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Fig. 6. Structure of mutual coupling matrix

Fig. 7. Presence of mutual coupling, UCA with M = 8 sensors, D = 3
sources, T = 200 snapshots

symmetric structure as depicted in the figure 6. After training
and testing using the same procedure as in the first experiment,
we obtained figure 7, which compares the performance of the
algorithms against the rank-reduction (RARE) algorithm, as
discussed in Section V or [13]–[15]. We can see that DA-
MUSIC can also be used for DoA estimation under mutual
coupling, an aspect does not seem to have been explored in
the original paper yet. Moreover, its modified version provides
a slight improvement in estimation performance. Finally, our
proposed DD model consistently outperforms both versions of
DA-MUSIC as well as the RARE algorithm.

VIII. CONCLUSIONS

We have introduced an enhanced version of the hybrid
DA-MUSIC model for DoA estimation, resulting in improved
performance. Additionally, we have developed a purely deep
learning model that surpasses not only traditional algorithms
like MUSIC, but also a state-of-the-art hybrid DA-MUSIC
model in various scenarios, including ideal conditions, sources
of coherence, sensor positioning errors and unknown mutual
coupling. This novel model maintains acceptable computa-
tional complexity compared to DA-MUSIC, particularly when
only a few sensors are available.
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