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Abstract—In recent years, low-complexity approxima-
tions of the Kalman filter have been widely employed
in real-time applications to overcome computational
limitations in various embedded and distributed systems.
Accurate state estimation is crucial in these settings, yet
simplifications such as assuming zero process noise limit
the model applicability to unrealistic scenarios. Our
work aims to extend existing low-complexity Kalman
filter models by accounting for non-zero process noise,
making the filter more adaptable to realistic conditions.
We contribute with a novel formulation that reduces
the computational complexity from cubic to quadratic,
achieving a significant simplification without compro-
mising estimation accuracy. We benchmarked our model
against the traditional Kalman filter in simulation
for three distinct scenarios. Our results indicate that
the proposed approach maintains estimation accuracy
comparable to the traditional Kalman filter while
achieving reduced computational time, demonstrating
its potential for practical, noise-inclusive problems.

Index Terms—Low-complexity Kalman filter, State
estimation, Computational complexity, Noise-inclusive
models.

I. Introduction

The Kalman filter [1] is a fundamental algorithm
for state estimation in dynamic systems, widely applied
in fields such as autonomous vehicles, robotics, finance,
and signal processing. Its applications also extend to
tracking underwater objects using passive sonar [12], state
estimation in Unmanned Aerial Vehicle (UAV) navigation
[13], and heart rate estimation from noisy Photoplethys-

mographic (PPG) signals in wearable devices [14]. It
recursively estimates system states from noisy observations
by optimally combining model predictions with incoming
measurements, minimizing estimation error using linear
algebra and probability theory. However, its cubic compu-
tational complexity limits real-time applications [2]. To
mitigate this, researchers have proposed low-complexity
approximations like the Kalman-DCD [3] and ensemble-
based methods [7], which reduce computational demands
but may compromise accuracy.
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A key challenge in Kalman filter design is handling
process noise, which impacts estimation accuracy, especially
in dynamic environments. Some low-complexity approaches
assume zero process noise for efficiency [4], but this
can degrade performance under real-world disturbances.
Conversely, accounting for non-zero process noise enhances
realism but increases computational cost, requiring a
balance between efficiency and accuracy.

Several works address these trade-offs. Lee and Park
[5] proposed an adaptive-gain Kalman filter, improving

robustness at a higher computational cost. Smith et
al. [6] developed a subspace-based filter that reduced
complexity but performed well only in linear systems with
low noise. Gupta et al. [7] introduced a hybrid ensemble
Kalman filter, which struggled in highly dynamic scenarios.
Unlike these, our method explicitly incorporates non-zero
process noise in a low-complexity formulation, balancing
computational efficiency with accuracy.

This work develops and validates an approximate
Kalman filter formulation that maintains estimation accu-
racy while reducing complexity from cubic to quadratic.
We compare its performance with the traditional Kalman
filter across three distinct scenarios, demonstrating up to
a 40% reduction in execution time without compromising
accuracy. These results highlight the practical relevance
of the method for real-time state estimation in resource-
constrained environments.

The remainder of this paper is structured as follows:
Section II reviews related work, Section III presents the
proposed approach, and Sections IV and V detail the
methodology and results. Finally, Section VI concludes
the paper.

II. Related Work
This section reviews literature on low-complexity Kalman

filter approximations and the limitations of assuming zero
process noise.

Claser and Nascimento [4] proposed the Kalman-DCD
algorithm, integrating Dichotomous Coordinate Descent
(DCD) [19] to reduce computational cost while maintaining
performance comparable to the standard Kalman Filter.
Their formulation assumed zero process noise. Schmidt et al.
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[8] developed a Gaussian filtering method using low-rank
covariance approximations, achieving quadratic complexity
with improved accuracy over ensemble-based methods.
Tsuzuki and Ohki [9] introduced a low-rank Kalman Filter
for discrete-time systems using Oja’s principal component
flow, ensuring bounded mean square error while reducing
computational cost. Deshpande [10] showed that assuming
zero process noise introduces inaccuracies when process and
measurement noises are correlated, proposing a corrective
term for improved robustness. Finally, Greenberg et al. [11]
analyzed noise estimation fragility under model assumption
violations, using gradient-based optimization to enhance
state prediction accuracy.

These works highlight the trade-off between efficiency
and accuracy in Kalman Filter approximations. Unlike
previous methods, our approach introduces a formulation
with quadratic complexity while explicitly considering
nonzero process noise, improving adaptability for real-
time applications. Comparing with methods that neglect
process noise would be unfair and impractical, as they are
not designed for realistic scenarios. Our novel formulation
reduces complexity while maintaining estimation accuracy,
making the traditional Kalman filter the most relevant
benchmark.

III. Proposed approach
The Kalman filter, in its standard form, is represented

by Eqs (1)–(2):

xn+1 = Fnxn + Gntn, (1)
zn = hT

n xn + rn, (2)

where xn ∈ RM is the vector that we wish to estimate,
tn ∈ RM is the process noise, assumed to be zero-mean
white Gaussian with covariance matrix Tn, Fn is the state
transition matrix, Gn is the process noise gain matrix,
zn is the measurement at time n, hn is the measurement
vector, and hT

n is its transpose. In this paper we restrict
the measurement noise rn to be a scalar zero-mean white
Gaussian noise with variance σ2

r(n).
Claser and Nascimento [4] proposed a low-complexity

(O(M)) Kalman filter using DCD [19], assuming zero
process noise. This work proposes a different approach that
allows for nonzero process noise. The inverse of the updated
error covariance matrix at time n + 1, given observations
up to n + 1, is defined in Eq. (3) [4].

P −1
n+1|n+1 = P −1

n+1 + 1
σ2

r(n)hn+1hT
n+1, (3)

where Pn+1|n+1 is the updated error covariance matrix
after the measurement update and P −1

n+1 is the inverse of
the predicted error covariance matrix before incorporating
the measurement.

Knowing that the predicted error covariance matrix at
time step n + 1, Pn+1, is represented by Eq. (4):

Pn+1 = FnPn|nF T
n + GnTnGT

n , (4)

we can substitute (4) in (3):

P −1
n+1|n+1 = (FnPn|nF T

n + GnTnGT
n )−1 + 1

σ2
r(n)hn+1hT

n+1

(5)
One may consider the special case where the matrix
GnTnGT

n is constant over time. However, even in this
case, the computational complexity remains cubic if the
matrix is full, as the cost of computing the matrix inverse
or the series expansion still depends on the full matrix
multiplications. Therefore, assuming GnTnGT

n constant
does not offer significant practical advantages in terms
of complexity reduction unless the matrix is also sparse or
diagonal.

Eq. (6) is employed to approximate the matrix inversion:

(A − B)−1 =
∞∑

k=0
(A−1B)kA−1 (6)

The Neumann series expansion used in Eq. (6) is valid
under the condition that the spectral radius of the matrix
A−1B is strictly less than one, i.e., ρ(A−1B) < 1. This
ensures the convergence of the infinite sum [2]. In our
context, we have:

A = GnTnG⊤
n , B = −FnPn|nF ⊤

n ,

and the matrix Pn|n is assumed to be small in magnitude
relative to Tn, due to the assumption that the prediction
error is much smaller than the process noise. Consequently,
∥A−1B∥ ≪ 1, and the spectral radius ρ(A−1B) is also
much smaller than one, ensuring the convergence of the
Neumann expansion. This condition is consistent with the
simulation scenarios considered in Section IV, where Tn ≫
Pn|n.

Assuming GnTnGT
n is invertible, we apply (6) to(

FnPn|nF T
n + GnTnGT

n

)−1 to obtain(
FnPn|nF T

n + GnTnGT
n

)−1

=
(
GnTnGT

n −
(
−FnPn|nF T

n

))−1

=
∞∑

k=0

[(
GnTnGT

n

)−1 (
−FnPn|nF T

n

)]k (
GnTnGT

n

)−1
.

(7)
We assume Pn|n is very small compared to Tn, that is,

the prediction error is small compared to the noise level.
Let us take the first two terms of the infinite series for
approximation:(

FnPn|nF T
n + GnTnGT

n

)−1

≈
(
GnTnGT

n

)−1 −
(
GnTnGT

n

)−1 (
FnPn|nF T

n

) (
GnTnGT

n

)−1
.

(8)
Assuming Gn and Tn are invertible, this leads to:(

FnPn|nF T
n + GnTnGT

n

)−1

≈ G−1
n T −1

n G−T
n − G−1

n T −1
n G−T

n

(
FnPn|nF T

n

)
G−1

n T −1
n G−T

n .
(9)
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Eq. (3) then becomes:

P −1
n+1|n+1 = T −1

n − T −1
n FnPn|nF T

n T −1
n + 1

σ2
r(n)hn+1hT

n+1.

(10)
Assuming Fn to be a diagonal matrix and Gn to be an

identity matrix:

P −1
n+1|n+1 = T −1

n − T −1
n FnPn|nF T

n T −1
n + 1

σ2
r(n)hn+1hT

n+1,

(11)
leading to

P −1
n+1|n+1 = T −1

n (I − FnPn|nF T
n T −1

n ) + 1
σ2

r(n)hn+1hT
n+1.

(12)
Now, we need to derive the recursion in matrix form.

Assuming further that Tn is diagonal with elements Tii,
we obtain:

T −1
n =


T −1

11 0 · · · 0
0 T −1

22 · · · 0
...

... . . . ...
0 0 · · · T −1

MM

 , Fn =


F11 0 · · · 0
0 F22 · · · 0
...

... . . . ...
0 0 · · · FMM

 , Pn|n =


P11 P12 · · · P1M

P21 P22 · · · P2M

...
... . . . ...

PM1 PM2 · · · PMM

 , hn+1 =


hn+1,1
hn+1,2

...
hn+1,M

 .

(13)
This leads to:
P −1

n+1|n+1 =


T −1

11 0 · · · 0
0 T −1

22 · · · 0
...

... . . . ...
0 0 · · · T −1

MM





1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 −


F11 0 · · · 0
0 F22 · · · 0
...

... . . . ...
0 0 · · · FMM




P11 P12 · · · P1M

P21 P22 · · · P2M

...
... . . . ...

PM1 PM2 · · · PMM




F11 0 · · · 0
0 F22 · · · 0
...

... . . . ...
0 0 · · · FMM




T −1
11 0 · · · 0
0 T −1

22 · · · 0
...

... . . . ...
0 0 · · · T −1

MM




+ 1
σ2

r(n)


hn+1,1
hn+1,2

...
hn+1,M

 [
hn+1,1 hn+1,2 · · · hn+1,M

]
.

(14)
Simplifying the blocks, we get:

P −1
n+1|n+1 =


T −1

11 0 · · · 0
0 T −1

22 · · · 0
...

... . . . ...
0 0 · · · T −1

MM

 −


T −1

11 F11P11F11T −1
11 T −1

11 F11P12F22T −1
22 · · · T −1

11 F11P1M FMM T −1
MM

T −1
22 F22P21F11T −1

11 T −1
22 F22P22F22T −1

22 · · · T −1
22 F22P2M FMM T −1

MM
...

... . . . ...
T −1

MM FMM PM1F11T −1
11 T −1

MM FMM PM2F22T −1
22 · · · T −1

MM FMM PMM FMM T −1
MM



+ 1
σ2

r(n)


h2

n+1,1 hn+1,1hn+1,2 · · · hn+1,1hn+1,M

hn+1,2hn+1,1 h2
n+1,2 · · · hn+1,2hn+1,M

...
... . . . ...

hn+1,M hn+1,1 hn+1,M hn+1,2 · · · h2
n+1,M

 .

(15)
Then the final equation is represented by

P −1
n+1|n+1 =



T −1
11 − T −1

11 F11P11F11T −1
11 + 1

σ2
r(n) h2

n+1,1 · · · −T −1
11 F11P1M FMM T −1

MM + 1
σ2

r(n) hn+1,1hn+1,M

−T −1
22 F22P21F11T −1

11 + 1
σ2

r(n) hn+1,2hn+1,1 · · · −T −1
22 F22P2nFnnT −1

nn + 1
σ2

r(n) hn+1,2hn+1,n

... . . . ...

−T −1
MM FMM PM1F11T −1

11 + 1
σ2

r(n) hn+1,M hn+1,1 · · · T −1
MM − T −1

MM FMM PMM FMM T −1
MM + 1

σ2
r(n) h2

n+1,M


.

(16)
The computational complexity of the proposed equation

is analyzed based on required operations. Since multiplica-
tions of diagonal by full matrices, additions of full matrices,
and outer products of vectors have quadratic complexity in
the dimension, computing P −1

n+1|n+1 also remains O(M2).
Thus, the above proposed formulation reduces the Kalman
filter complexity from cubic to quadratic.

IV. Method
To evaluate the proposed approximated method, we use

the traditional Kalman filter as a reference and implement
the algorithms in Julia [15] for its efficiency over Python
[16] and Matlab [17] [18]. Three scenarios were simulated

to generate realistic scenario data, satisfying two conditions:
(i) the Kalman filter is essential, and (ii) noise significantly
exceeds the prediction error Pn|n. This assumption is
justified by the need to balance computational efficiency

and accuracy. To reduce complexity, the matrix inversion
series is truncated, considering only the first terms while
neglecting higher-order terms. This approximation is valid
when noise dominates the signal because, in this case, the
noise covariance matrix Tn is significantly larger than other
system components, leading to a rapid decay of iterative
products involving T −1

n and Pn|n. Consequently, higher-
order terms contribute negligibly to the final result, making
truncation a computationally efficient and practically
justifiable approach.

Table I shows the simulation setup for the three scenarios.

TABLE I: Simulation setup for the considered scenarios
Scenarios x F H Q R

Scenario 1 7 × 1 I7
1 × 7

(Dynamic: H[:, :, k] = 1 + 0.1 · randn(7)) 0.0001 · I7 0.001 (Scalar)

Scenario 2 7 × 1 I7
1 × 7

(Dynamic: H[:, :, k] = 1 + 0.1 · randn(7)) 0.0001 · I7 0.002 (Scalar)

Scenario 3 7 × 1 I7
1 × 7

(Dynamic: H[:, :, k] = 1 + 0.1 · randn(7)) 0.0001 · I7 0.003 (Scalar)

All data used in this study were generated through
simulations and do not correspond to real-world measure-
ments. To ensure reproducibility, the code used for imple-
menting the approximated approach is publicly available
at: https://github.com/tareksayjari/C-digos-Julia. The
obtained results include:

• The execution time, which is the time required for
each filter to complete its estimation process;

• The Mean Squared Error (MSE), which is the average
squared difference between the estimated and actual
values;

• A state plot (X) for each scenario, showing the true
state, the state of the traditional Kalman filter, and
the state of our approximate filter; and

• An output plot (Z) for each scenario, showing the true
output, the output from the traditional Kalman filter,
and the output from our approximate filter.

V. Results and discussion
This section presents the simulation results, including

execution time, mean squared error (MSE), state evolution,
and output plots.

Figure 1 shows a significant reduction in execution time
for the approximated filter compared to the traditional
Kalman filter across all three scenarios. This confirms the
effectiveness of the approximated approach in reducing
computational complexity from cubic to quadratic, result-
ing in a more efficient filtering process. The execution time
of the approximated filter remains consistently lower across
all scenarios, with the most significant difference observed
in the Scenario 2. This trend is also evident in both the
Scenario 1 and Scenario 3. These findings support the
claim that the approximated approach achieves substantial
computational savings compared to the traditional Kalman
filter.

Concerning the MSE, Figure 2 indicates that the approx-
imated filter exhibits higher mean squared error (MSE)
compared to the traditional Kalman filter across all three
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Scenario 1 Scenario 2 Scenario 3
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Fig. 1: Execution time for Kalman and proposed filters

scenarios. While the approximated filter achieves a signifi-
cant reduction in computational complexity and execution
time, this comes at the cost of increased estimation error.
The gap between the two filters MSE values becomes more
pronounced in both Scenario 2 and Scenario 3, suggesting
that the approximated approach may be more sensitive
to specific scenario conditions. Despite this trade-off, the
MSE remains within a reasonable range, reinforcing the
practicality of the approximated filter for scenarios where
computational efficiency is a priority over minimal error.

Scenario 1 Scenario 2 Scenario 3
0

1

2

3

·10−3

M
SE

Kalman

Approximated

Fig. 2: MSE for Kalman and approximated filters

Figures 3a, 3b and 3c represent the sum of all elements of
the state vector over time, providing an overall visualization
of the estimated state evolution rather than focusing
on a single component. These figures depict the state
plots for the three simulation scenarios, illustrating the
estimation performance of the traditional Kalman filter
and the approximated approach compared to the true
state. In Scenario 1 and Scenario 2, both filters closely
follow the true state trajectory, with minimal deviations,
indicating that the approximated formulation maintains
reasonable estimation accuracy. The overall similarity
in state estimation for all scenarios, combined with the
computational efficiency gains, support the viability of the

approximated filter in scenarios where lower complexity is
prioritized over marginal accuracy losses.
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Fig. 4: State plot for App 1
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Fig. 5: State plot for App 2

Kalman filter approximations often assume zero process
noise, limiting their applicability to real-world scenarios.
To address this, we proposed a recursive formulation that
reduces computational complexity from cubic to quadratic
while considering non-zero process noise. Our simulations
in three applications showed that the proposed method
significantly reduces execution time while maintaining esti-
mation accuracy in most cases. These findings highlight the
potential of our approach for noise-inclusive environments
where computational efficiency is crucial. Future work will
focus on improving the stability of the recursive filter in
highly dynamic scenarios and exploring its implementation
in hardware-constrained systems.
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Kalman filter approximations often assume zero process
noise, limiting their applicability to real-world scenarios.
To address this, we proposed a recursive formulation that
reduces computational complexity from cubic to quadratic
while considering non-zero process noise. Our simulations
in three applications showed that the proposed method
significantly reduces execution time while maintaining esti-
mation accuracy in most cases. These findings highlight the
potential of our approach for noise-inclusive environments
where computational efficiency is crucial. Future work will
focus on improving the stability of the recursive filter in
highly dynamic scenarios and exploring its implementation
in hardware-constrained systems.
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Kalman filter approximations often assume zero process
noise, limiting their applicability to real-world scenarios.
To address this, we proposed a recursive formulation that
reduces computational complexity from cubic to quadratic
while considering non-zero process noise. Our simulations
in three applications showed that the proposed method
significantly reduces execution time while maintaining esti-
mation accuracy in most cases. These findings highlight the
potential of our approach for noise-inclusive environments
where computational efficiency is crucial. Future work will
focus on improving the stability of the recursive filter in
highly dynamic scenarios and exploring its implementation
in hardware-constrained systems.
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(c) State plot for Scenario 3

Fig. 3: State plots for the three scenarios

Concerning the output plots, Figures 4a, 4b and 4c
illustrate the performance of the traditional Kalman filter
and the approximated approach in estimating the true
output. In Scenario 1, Scenario 2 and Scenario 3, both
filters closely follow the real output with minimal deviation,
indicating that the approximated formulation effectively
captures the system dynamics. The overall consistency
of the outputs across all scenarios, combined with the
computational efficiency gains, demonstrates the feasibility
of the proposed filter for applications where reducing com-
putational complexity is prioritized over minor accuracy
trade-offs.

VI. Conclusion
State estimation is essential in real-time applications,

requiring efficient filtering techniques that balance accu-
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suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.

0 200 400 600 800 1,000
1.5

2

2.5

3

Time (s)

x

x Real

x Kalman

x Recursive

Fig. 3: State plot for App 1

0 200 400 600 800 1,000

3.5

4

Time (s)

x

x Real

x Kalman

x Recursive

Fig. 4: State plot for App 2

0 200 400 600 800 1,000

3

4

5

6

Time (s)

x

x Real

x Kalman

x Recursive

Fig. 5: State plot for App 3

Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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Fig. 7: Comparison of output plots for the three applica-
tions
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suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.

0 200 400 600 800 1,000
1.5

2

2.5

3

3.5

Time (s)

z

z Real

z Kalman

z Recursive

Fig. 6: Output plot for App 1

0 200 400 600 800 1,000

3.5

4

4.5

Time (s)

z

z Real

z Kalman

z Recursiva 20

Fig. 7: Output plot for App 2

0 200 400 600 800 1,0003

3.5

4

4.5

Time (s)

z

z Real

z Kalman

z Recursiva 20

Fig. 8: Output plot for App 3

(a) Output plot for App 1

suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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(b) Output plot for App 2

suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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Fig. 7: Comparison of output plots for the three applica-
tions
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suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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suggesting a potential stability issue in more complex or
dynamic scenarios. This aligns with the MSE results, where
the recursive filter exhibited higher errors, particularly in
App 3. Despite these discrepancies, the overall similarity
in state estimation for App 1 and App 2, combined with
the computational efficiency gains, supports the viability
of the recursive filter in scenarios where lower complexity
is prioritized over marginal accuracy losses.
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Concerning the output plots, Figures 6, 7 and 8 demon-
strate that for the three applications illustrate the perfor-
mance of the traditional Kalman filter and the proposed
recursive approach in estimating the true output. In App
1 and App 2, both filters closely follow the real output

with minimal deviation, indicating that the recursive
formulation effectively captures the system dynamics.
However, in App 3, the recursive filter begins to diverge
significantly from the true output over time, suggesting
potential stability issues in more complex scenarios. These
results are consistent with the MSE analysis, where the
recursive filter exhibited higher errors, particularly in App
3. Despite this, the overall alignment of the outputs in App
1 and App 2, combined with the computational efficiency
gains, supports the feasibility of the recursive filter for
applications where reduced computational complexity is a
priority over slight accuracy losses.
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Fig. 6: Output plot for App 1
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Fig. 7: Output plot for App 2
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Fig. 7: Comparison of output plots for the three applica-
tions
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Fig. 8: Output plot for App 1
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Fig. 9: Output plot for App 2
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Fig. 4: Output plots for the three scenarios

racy and computational cost. Traditional low-complexity
Kalman filter approximations often assume zero process
noise, limiting their applicability in real-world scenar-
ios. To address this, we proposed a formulation that
reduces computational complexity from cubic to quadratic
while considering non-zero process noise, assuming the
reconstruction error is much smaller than the noise level.
Our simulations in three scenarios showed that the pro-
posed method significantly reduces execution time while
maintaining estimation accuracy in most cases. These
findings highlight the potential of our approach for noise-
inclusive environments where computational efficiency is
crucial. Future work includes improving the stability of
the proposed filter in highly dynamic scenarios where the
hypothesis of small reconstruction error may not hold in
some time periods, and exploring its implementation in
hardware-constrained systems.
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