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Abstract—This paper addresses distributed line spectral esti-
mation problem arising in multi-node sampling systems. While
recent studies have explored the distributed compressed sensing
and shown its advantages in terms of data compression, few
works consider the intrinsic signal correlation to achieve joint
sparse spectral estimation. We thus propose the distributed
covariance fitting (DCF) method by employing the joint sparsity
and cross correlation to reconstruct the multilevel structured ma-
trix and extract unknown parameters. We formulate a semidef-
inite program (SDP) via the covariance fitting criteria where
the structured feature of the second-order statistics for signal
ensemble is exploited. The connection between the DCF method
and classical atomic norm minimization method illustrates the
effective application of joint sparsity and redundant information
of the signal ensemble. Extensive numerical results are provided
that corroborate our analysis and exhibit the superior perfor-
mance of proposed method.

Index Terms—Distributed line spectral estimation, joint spar-
sity, inter-signal correlation, multilevel reconstruction.

I. INTRODUCTION

L INE spectral estimation is a classic problem in statistical
signal processing [1]. It generally aims at estimating

spectral parameters from noisy sinusoidal signals sampled
from a single node. In this paper, we consider the distributed
line spectral estimation problem which is devoted to estimating
multi-dimensional spectral parameters from a set of noisy
signals sampled from multiple nodes and sharing the same
complex amplitude information. This problem has extensive
applications in array processing [2] and radar [3], [4].

Subspace-based methods [5], [6] and their extensions [7],
[8] are widely used for line spectral estimation, even in dis-
tributed systems to cope with colored noise [4], [9]. However,
they do not essentially extend the array aperture, and therefore
are not able to improve the estimation accuracy under typical
operative conditions. Besides, subspace-based methods may
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degrade or even fail under limited channels or low signal to
noise ratio (SNR) conditions in practice [10]. With the devel-
opment of compressed sensing, the gridless sparse methods
have gained widespread popularity in line spectral estimation
[11]–[13] due to their ability to circumvent the grid mismatch
problem caused by traditional sparse recovery framework [14].
The typical sparse approaches include deterministic methods,
e.g., atomic norm minimazation (ANM) and its extensions
[15], [16], and covariance fitting methods [17], [18], which
are all capable of implementing the spectral estimation directly
in the continous frequency domain. Meanwhile, they maintain
high parameter resolution under aforementioned challenging
conditions when subspace-based methods degrade severely.

Recently, distributed compressed sensing (DCS) provides a
systemic joint sparse framework for the signal ensemble [19],
employing the joint sparsity and inter-signal correlation to
achieve signal recovery with smaller measurements. However,
DCS is devoted to randomly generating the sensing matrices
to compress the data, thus not suitable for line spectral
estimation. Then, how to combine the DCS framework with
distributed line spectral estimation to fully exploit the joint
sparsity and redundancy information is a significant challenge.

In this paper, we propose a distributed covariance fitting
(DCF) method for distributed line spectral estimation and
formulate the corresponding optimization problem by recon-
structing distributed covariance matrix via its connection to
multilevel Toeplitz (MLT) structure. The proposed method ef-
fectively exploits the joint sparsity and redundant information
among the signal ensemble to achieve multilevel reconstruc-
tion, offering a way to improve the estimation performance.
Numercial results are provided to demonstrate the superior
performance of the DCF method.

Notations: Boldface letters are reserved for vectors and
matrices. tr(X) means the trace of X , respectively. The i-
th row (j-th column) of X is X(i, :) (X(:, j)).
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II. SIGNAL MODEL

We consider a array direction finding problem with K
narrowband sources impings on N uniform linear arrays
configured orthogonally at the same location for application,
then the data at the t-th snapshot sampled from the n-th
subarray can be represented as

Y n(t)=

K∑
k=1

an(fnk)snk(t) + en(t), n=1, . . . , N, (1)

where i =
√
−1, an(f) =

[
1, ei2πf , . . . , ei2π(Mn−1)f

]T
, Mn

denotes the number of samples at the n-th node and t ∈ [L] :=
{1, 2, . . . , L}; sk(t) ∈ C and fk ∈ [0, 1) are the amplitude
and frequency of the k-th component respectively and en(t)
is the measurement noise. Specially, two-dimensional (2D)
direction of arrival (DOA) estimation for L-shaped array can
be considered a two-nodes case. Then, with the shared source
signal S, all the data can be gathered as follows

Y =


A1(f1)
A2(f2)

...
AN (fN )

S +


E1

E2

...
EN

 ∈ CM×L, (2)

where M =
∑N

n=1 Mn denotes the number of all the samples,
fn =

[
fn1 . . . fnK

]T
are frequencies at the n-th node, and

An(fn) =
[
an(fn1) . . . an(fnK)

]
denotes the correspond-

ing manifold matrix. For notational simplicity, we will write
An(fn), ank as An and an(fnk) hereafter.

Assume that S and E are both independent random vari-
ables, and they are uncorrelated with each other. Besides, Nn

is additive zero means Gaussian white noise and every channel
of S obeys zero means complex Gaussian distribution, i.e.,

E(S(:,m)S(:, n)H) =

{
P , m = n

0, m ̸= n
,

E(E(:,m)E(:, n)H) =

{
diag(σ), m = n

0, m ̸= n
,

(3)

where P = diag(p1, · · · , pK), pk > 0 and σ ∈ CM always
hold in practice. Then the distributed covariance matrix of Y
can be represented as

R̂ =

A1

...
AN

P

A1

...
AN


H

+ diag(σ)

=

R11 · · · R1N

...
. . .

...
RN1 · · · RNN

+ diag(σ) = R+ diag(σ),

(4)

where R denotes the noise-free covariance matrix, Rmn ∈
CMm×Mn is the (m,n)-th block matrix of R, and the sample
covariance matrix can be calculated by

R̃ =
1

L
Y Y H . (5)

III. DISTRIBUTED COVARIANCE FITTING

It is intuitive to derive the similar covariance fitting criteria
for distributed line spectral estimation problem as single node
case by generalized least squares method [20], [21] as

h1 = ∥R̂
− 1

2 (R̃− R̂)R̃
− 1

2 ∥2F, (6)

when L > M which means that the inverse of R̃ exists. The
key point of this method is to characterize the structure of
distributed covariance matrix. Then we will study its structure
under typical scenario as K < min{Mn}Nn=1.

The ideal distributed covariance matrix R is no longer a
Toeplitz matrix as that in single node case, but it still has
excellent structural property and can be reconstructed from the
MLT structure [22]. According to (4), all the block matrices
of R can be represented as

Rmn = AmPAH
n ,m, n = 1, . . . , N. (7)

Then we can derive the following proposition to accurately
characterize the structure of the distributed covariance matrix.

Proposition 1: Consider a positive semidefinite (PSD) MLT
matrix TN which can be uniquely decomposed with the
sufficient condition that rank(TN ) = r < min{Mn}Nn=1 as
[22, Theorem 1]

TN = (AN ◦ · · · ◦A1)P (AN ◦ · · · ◦A1)
H , (8)

where ◦ denotes the Khatri-Rao product, then every block
matrix of ideal distributed covariance matrix R which satisfies
rank(R) = r can be constructed by TN as

Rmn=AmPAH
n =TN (1 :Nm−1 :Nm, 1:Nn−1 :Nn), (9)

where Nq =

{∏q
p=1 Mp, q ≥ 1

1, q = 0
.

Proof: For ease of notation, we will write the MLT matrix
TN as T in the proof. Without loss of generality, assume that
n ≥ m in Rmn and let T q ∈ CNq×Nq denotes a submatrix of
T as follows

T q = T (1 : Nq, 1 : Nq)

=

r∑
k=1

pk(aqk ⊗ · · · ⊗ a1k)(aqk ⊗ · · · ⊗ a1k)
H

=

r∑
k=1

pk(aqka
H
qk ⊗ · · · ⊗ a1ka

H
1k),

(10)

where ⊗ denotes the Kronecker product and rank(T ) = r <
min{Mn}Nn=1, then we can define Qqk as

Qqk = (aqka
H
qk ⊗ · · · ⊗ a1ka

H
1k) ∈ CNq×Nq , q ≤ N, (11)

where ajk = [1, ϕjk, · · · , ϕ
(Mj−1)
jk ], ϕjk = ei2πfjk , j =

1, 2, . . . , q. Then Qnk can be calculated recursively by

Qnk=(anka
H
nk ⊗Q(n−1)k)

=


1Q(n−1)k ϕ−1

nkQ(n−1)k · · · ϕ1−n
nk Q(n−1)k

ϕnkQ(n−1)k 1Q(n−1)k · · · ϕ2−n
nk Q(n−1)k

...
...

. . .
...

ϕn−1
nk Q(n−1)k ϕn−2

nk Q(n−1)k · · · 1Q(n−1)k

 .

(12)
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It is clear that the first Nn−1 rows of Qnk are equal to
aH
nk ⊗ Q(n−1)k ∈ CNn−1×n. Therefore, we can get aH

nk by
taking interval values from the first row of Qnk as

aH
nk = Qnk(1, 1 : Nn−1 : Nn). (13)

Besides, under the assumption that n ≥ m, Qmk = Qnk(1 :
Nm, 1 : Nm), then it is shown that

amk = Qnk(1 : Nm−1 : Nm, 1). (14)

According to the results above, it follows that

Rmn=

r∑
k=1

pkamka
H
nk

=

r∑
k=1

pkQnk(1 : Nm−1 : Nm, 1)Qnk(1, 1 : Nn−1 : Nn)

=

r∑
k=1

pkQNk(1 : Nm−1 : Nm, 1)QNk(1, 1 : Nn−1 : Nn).

(15)
Let W k=aNk ⊗ · · · ⊗ a1k, then it holds that

QNk(p, 1) = W k(p), QNk(1, q) = W k(q)
∗. (16)

Then for elements of T , it always holds that

T (p, q) =

r∑
k=1

pkW k(p)W k(q)
∗

=

r∑
k=1

pkQNk(p, 1)QNk(1, q),

(17)

and it follows that

Rmn = T (1 : Nm−1 : Nm, 1 : Nn−1 : Nn). (18)

Moreover, it always holds that

Tmn = TH
nm. (19)

Therefore, Proposition 1 is proved.
Based on the proposition and the covariance fitting criteria

defined in (6), we can naturally formulate the minimization
of h1 as the SDP problem from multilevel reconstruction
viewpoint under general L > M case as follows:

min
X,TN ,σ⪰0

tr(X) + tr(R̃
−1

R̂)

s.t.

[
X R̃

1
2

R̃
1
2 R̂

]
⪰ 0,TN ⪰ 0, rank(TN ) ≤ min{Mn}Nn=1.

(20)
where R̂ is constructed from (4) and (9), and the rank
constraint is a sufficient condition which is tight to ensure the
unique Vandermonde decomposition of the MLT matrix [22].
However, the rank constraint is non-convex and may limit the
maximum number of detectable components.

Inspired by the SPA method in the single node case [17],
we relax the rank constraint and reformulate the problem as

min
X,TN ,σ⪰0

tr(X) + tr(R̃
−1

R̂)

s.t.

[
X R̃

1
2

R̃
1
2 R̂

]
⪰ 0,TN ⪰ 0.

(21)

Upon solving the problem, the optimal PSD MLT matrix can
be represented as

T ∗
N = (AN ◦ · · ·A1)P (AN ◦ · · ·A1)

H + δI, (22)

where δI is generated due to the redundant variable on the
principal diagonal of R̂, and it follows that rank(T ∗

N ) ≥ K.
Then the solution of (20) is one special realization of (22)
as δ = 0, and we can implement the postprocessing step
to maintain only the signal subspace by calculate K-order
truncated eigendecomposition of T ∗

N . Although the truncated
eigendecomposition may destroy the MLT structure of T ∗

N ,
making the Mapp algorithm [22] unusable, the classical mul-
tidimensional ESPRIT (MD-ESPRIT) algorithm can be used
directly for frequency extraction and pairing [23].

Till now, we have finished the distributed line spectral
estimation with the proposed DCF algorithm and the detailed
steps are summarized as Algorithm 1.

Algorithm 1 Distributed Covariance Fitting (DCF)

Require:
observed data Y and model order K.

Ensure:
Estimated frequency groups {fk}Kk=1, fk=(f1k, . . . , fNk).
1: Calculate the sample covariance matrix R̃ as (5);
2: Estimate T ∗

N by solving (21) with SDP3 solver;
3: Postprocess T ∗

N with K-order truncated eigendecompo-
sition to obtain TK

N ;
4: Extract and pair the frequency groups using MD-ESPRIT
algorithm from TK

N ;
5: return {fk}Kk=1.

Similar to the single node case, the DCF method also has
close connection to the ANM framework.

Lemma 1: The SDP problem in (21) is equivalent to the
following reweighted ANM (RAM) formulation as

min
Z

√
M∥Z∥Aw +

M∑
m=1

√
(R̃

−1
)ii∥(R̃

1
2 −Z)i∥2, (23)

where ∥Z∥Aw denotes the weighted atomic norm [24] defined
in general case as

∥Z∥Aw := inf
fk,sk

{
K∑

k=1

∥sk∥2
wk

: Z =

K∑
k=1

a(fk)sk}, (24)

where
a(fk) =

[
aT
1k aT

2k · · · aT
Nk

]T
, (25)

wk = [
1

M
a(fk)

HWa(fk)]
− 1

2 ,W = R̃
−1

. (26)

Proof: Suppose that R can be precisely constructed as
(9), then it can be cast as the following SDP problem:

∥Z∥Aw = min
X,R

1

2
√
M

[tr(X) + tr(WR)],

s.t.
[
X ZH

Z R

]
⪰ 0,

(27)
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which can be proved similar as [24, Theorem 3].
According to [13, lemma4], the problem in (21) can be

transformed as follows:

min
R,σ⪰0

tr(
1

L
Y HR̂

−1
Y ) + tr(R̃

−1
R̂)

⇔ min
Z,R,σ

tr(ZHR−1Z) +

M∑
i=1

1

σi
∥( 1√

L
Y −Z)i∥22

+ tr(R̃
−1

R) +

M∑
i=1

σi(R̃
−1

)ii

⇔ min
Z

√
M∥Z∥Aw +

M∑
i=1

√
(R̃

−1
)ii∥(

1√
L
Y −Z)i∥2,

(28)
where W = R̃

−1
and (1/

√
L)Y can be substituted by R̃

1
2 .

The lemma is proved.
According to (23), the joint sparsity is exhibited in the

former item, and the coherence property is characterized by
the latter item which calculates the whole reconstruction error
of the distributed covariance matrix.

IV. NUMERCIAL RESULTS

In this section, we illustrate the performance of the proposed
DCF method by comparing it with ESPRIT and SPA [17] algo-
rithm directly acting on R̃ via numerical simulations. Besides,
the Cramér-Rao bound (CRB) of algorithms are calculated as
the benchmarks. As the DCF method can utilize the correlation
information embedded in the distributed covariance matrix,
it posseses lower CRB which is represented as CRB+ while
that of algorithms performing independently at local node is
denoted as CRB.

In the experiments, we randomly generate the complex am-
plitudes {sk(t)} independently and identically from a standard
complex normal distribution for all nodes, and form different
frequency gruops fk = {fnk}Nn=1 for different components by
angles as fnk = cos(θnk)/2, θnk ∈ [0, 180◦) for application
in array direction finding. The noise is complex Gaussian
white noise with zero mean and the same variance at samples
of the same node. The SNR of the n-th node is defined as
10 log10(∥Y n−En∥2F/∥En∥2F). Besides, we will mainly focus
on the two nodes case for brevity, and the similar results can
be obtained for more nodes.

To investigate the performance improvement of the DCF
method for frequency identification, we employ samples with
L = 1×106 in the high SNR regime as SNR1=SNR2=30dB
to obtain a relatively ideal sample covariance matrix. Fig. 1
shows the parameter identification performance of proposed
method in the case that the sample size is set as M1 =
M2 = 5. It is shown that the proposed method can identify
approximately 14 targets exceeding the sensor number of
any node in the system, which outperforms the conventional
subspace methods and the general algorithms depending on
the single node data.

We study the RMSE performance of the proposed method
versus the SNR. We fix L = 200, M1 = M2 = 6,

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Fig. 1: Estimates of the DCF method with 100 trials, where
the sample size is set as M1 = M2 = 5 (red circles account
for the true values and blue crosses stand for the estimates).

K = 2 and consider the case that the SNR of two nodes
varies simultaneously in {−15,−10, . . . , 10}dB. Without loss
of generality, K = 2 uncorrelated components received by the
nodes with θ1 = {60, 90}, θ2 = {50, 80}. J = 200 Monte
Carlo trials are carried out and the root mean square error
(RMSE) of the system can be calculated as

RMSE =

√√√√ 1

NJK

N∑
n=1

J∑
i=1

K∑
k=1

(θ̂
(j)
nk − θnk)2, (29)

where θ̂
(j)
nk denotes the corresponding estimate of the k-th

component for the j-th trial at the n-th node. As few outliers
may destroy the reliablity of the experiment, we set a threshold
as 30◦ to measure the success of single experiment in Monte-
Carlo runs, which means that if there exists any component
with

∣∣∣θ̂(j)nk − θnk

∣∣∣ > 30◦, the j-th experiment will be considerd
a failure, and it will not be included in the calculation of
RMSE.

It can be seen that all the algorithms have good performance
in the high SNR regime, while the DCF method performs
better for it can effectively utilize the redundant imformation
embeded in the inter-correlation matrix and so possesses lower
CRB. In the moderate/low SNR regime when the measurement
noise may cause the leakage of noise to signal subspace
and destroy the orthogonality between the signal and noise
subspace, the performance of algorithms degrades. However,
the DCF method exhibits stronger robustness to noise as it
outperforms other methods in RMSE and success rate at -
10dB. In the extremely low SNR regime as -15dB, all the
algorithms may fail but the proposed method still performs
slightly better.
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Fig. 2: RMSE of estimate results of the whole system. Some
settings: M1 = M2 = 6, K = 2, L = 200, θ1 = {60, 90}
and θ2 = {50, 80} (CRB and CRB+ denote benchmarks for
independent estimation at local node and multi-node jointly
estimation, respectively.)

V. CONCLUSION

In this paper, we construct a distributed line spectral es-
timation model in array processing scenario, and propose a
sparse method, termed DCF, via the connection between the
distributed model and the MLT structure to exploit the joint
sparsity and redundant information embedded in the cross-
corrlation matrix. Numerical results demonstrate the superior
performance of proposed method in terms of frequency iden-
tification and estimation accuracy in the low SNR regime.
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