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Abstract—Distributed nested arrays with large baseline can
significantly enhance array aperture with only a few elements.
However, such spacing often results in increased sidelobe levels
and angular ambiguities. To address these issues and achieve
ambiguity-free DOA estimation, this paper proposes a subspace
algorithm based on inserting contiguous auxiliary arrays. When
the distributed nested array structure is set, we analyze the
symmetric hole range, and derive a closed-form solution for
both the required minimum number of auxiliary elements and
the optimal position where to insert the first auxiliary element.
This strategy ensures complete coverage of the hole region
and maintains the continuity of the differential virtual array.
Numerical simulations demonstrate that the proposed algorithm
effectively removes angular ambiguities and outperforms the
conventional dual-scale ESPRIT approach, achieving estimation
accuracy comparable to that of a ULA with an equivalent
aperture while using fewer elements.

Index Terms—distributed nested arrays, large baseline dis-
tance, continuous auxiliary array, Spatial smoothing

I. INTRODUCTION

Niform linear arrays (ULA) are widely used in direction-

of-arrival (DOA) estimation due to their simplicity and
unambiguous angular resolution [1]. However, their aperture
is inherently limited by the number of physical sensors,
restricting the achievable degrees of freedom (DOFs) and res-
olution [2], [3]. To address this, nested arrays were proposed,
leveraging a two-level sparse structure to generate an extended
difference coarray (DCA) and significantly improve virtual
aperture [4]-[6]. While nested arrays outperform ULAs, their
aperture expansion capability remains constrained by the sub-
array configuration, limiting their applicability in large-scale
sensing scenarios [7]—[9].
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Distributed arrays, composed of multiple spatially separated
sub-arrays, offer a promising solution to further extend the
physical aperture [10], [11]. By deploying sub-arrays with
large baseline distances, distributed configurations achieve
unprecedented spatial resolution and DOFs. Among these,
distributed nested arrays combine the advantages of nested
sub-arrays and distributed geometries, enabling both dense
sampling within sub-arrays and ultra-wide aperture expansion
across sub-arrays [12], [13]. Nevertheless, the large baseline
spacing between sub-arrays introduces nonuniform holes in
the DCA. These holes degrade DOA estimation performance
because of the insurgence of angular ambiguity, so posing a
critical bottleneck for practical deployments [14], [15].

This paper proposes a method to eliminate DCA holes in
distributed nested arrays through the insertion of continuous
auxiliary elements. By analyzing the hole distribution and
symmetry properties, we derive closed-form expressions for
the optimal positions and minimum number of auxiliary sen-
sors required to completely fill the holes. The reconstructed
virtual array forms a continuous uniform linear structure,
enabling unambiguous high-resolution DOA estimation.

II. SIGNAL MODEL ABOUT DISTRIBUTED NESTED ARRAYS

In this paper, the distributed nested array Spisna 1S com-
posed of two nested arrays Sy with the same structure, where
subarray 1 is defined as Sya; and subarray 2 is defined as
Snaz.

Since Sya1 and Syao share the same structure, we illustrate
the concept using Sya; as an example. Sya; consists of
two parts, denoted as Snai.,,, and Snai.,,- Specifically,
Sna1,,,, is a dense ULA composed of M; elements with
an inter-element spacing of di = /2, where A\ denotes
the wavelength of the incident signal. In contrast, Sxa1,,,,
is a sparse uniform linear array comprising M, elements,
with an inter-element spacing of dy = (M7 + 1) dy. Overall,
Sna1 contains a total of 2M elements, satisfying the relation
2M = My + Ms,. According to the array configuration, the
positions of the elements can be expressed as z;di,i =
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Fig. 1. Analysis of the array structure.
1,2,---,2M, where z; € Sya1, and Sya1 denotes the set  where
of positions in the nested array. The detailed structure is 0.) — [1. edde J(M—1)de
aig ( p) - [ , € o, € )
Sna1 = SNAlsubl U SNAlsub27 (6)

SNAlsubl = {07 1) T 7M1 - 1} 5
SNAlsubz - {MI)Q(MI + 1) - 17' o )MQ (Ml + 1) - 1} .
(1)
From Eq. (1), the array aperture of the nested array can
be obtained as (M + 1) dy, where M = M, (M +1) — 1.
According to Eq. (1), the positions of Spisna 1S

Spisna = Sna1 U Snaz,

Sna1 = SNAsubl U SNAsub27 2)

Snaz = D + Snai-
where D represents the baseline between the two sub-arrays.
To better characterize the sub-array spacing, we use the array
aperture of the nested sub-array as a reference length and
define the baseline length between the distributed nested sub-
arrays as D = L e (M +1), with L denoting the ratio of
the baseline length D to the aperture of the nested subarrays.
It is noteworthy that in this paper M; = My = M. Then
D=LeM(M+1)—1+1]=LM (M +1).

Consider P narrow-band far-field sources incident on the

distributed array. The received signal of the complete dis-
tributed nested array at time ¢ is

Y (t) = AS(t) +n(t) 3)

where A is the 4M x P dimensional array manifold matrix
of the distributed nested array, S (¢) is the P x 1 dimensional
source data, n (t) is the 4M x 1 dimensional noise vector at
time ¢, and Y (¢) is the 4M X 1 dimensional snapshot data
vector. Then

En@t)n" (t)] =01, 4)

where oy, is the noise power.

When the first element from Sya; is used as the reference
element, the manifold vector of the distributed nested array is
represented as

a(fy) = ap (6,) @ ar (), (5)

FMAE GI2(MFD1IdE . i [M(M+1)-1]de]

is the manifold vector of reference subarray, £ = 2{ sin 0, and
ap = [ 1 elPs ] The covariance matrix is given by

R,=E[YY"]. (7)
III. PROBLEM DESCRIPTION

The data covariance matrix R, is vectorized as
z = vec (R,) = BV + o’e. 8)

where B = [ b(61) b(6s) b (6p) | represents the
manifold of the virtual array, and V is the vector of signal
powers. In this formulation, e = [e{,eg, e ,eZM], e €
RAMX1 s the unit vector, b (6,) = a* (6,)®a (0,) is the array
manifold of the virtual array, whose elements correspond to the
positions in the difference set of the sparse array elements—a
structure known as the Difference coarray (DCA).
The manifold vector z can be expanded as

b(0,) =[ G (6,) C(6,) Gt (8) 17, ©

with

Cm (gp) _ |:e(q17q'm,)tpp’ e(quqm)gop, . ’e(q4qum)wp] T’
(10
and ¢, = —j2ndsinf,/A. The terms (g; — g;) indicate the
element positions in the DCA.

By removing redundancy in z and rearranging its elements
in increasing order, one obtains z from a virtual array with an
expanded coarray aperture, modeled as

z =BV + o2. an
where B is the manifold matrix for z and V represents
the virtual source signal from a single snapshot. Select the
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continuous part of z and record it as Z. The correlation matrix
for the consecutive lags is then formed as

R;: =zz". (12)
Due to the large baseline spacing in the sparse array, the
obtained DCA still contains many holes (holes and nonconsec-
utive segments), which can hinder effective DOA estimation.
The differential virtual array shown in Fig.1 (b) can be
obtained

DIFFsy; s+ = DIFFsy,, + UDIFFs,,+ UD]I]F]F(SNAl Snaz)+
(13)
where

DIFFs, ,, . = DIFFs,,,+ = {0,1,--- , M (M +1) — 1}

(14)
DHFF(SNA1,SNA2)+ - {D + [*M (M + 1) +1,---,-1,0,
Lo M(M+1)—-2,M(M+1)-1]}
(15)

Hence,the hole range of the differential virtual array is

HOLE = [M (M +1),D— M (M+1)]  (16)

If DIFFs,, 1+ 1 a continuous differential coarray with no
holes, it must satisfy M (M +1)—1>D—-M (M +1)+1.
Substituting D = LM (M + 1) into the inequality yields:

(L—2)M(M+1)< -2 (17)

IV. A HOLE-FILLING METHOD BASED ON THE
CONTINUOUS AUXILIARY ELEMENT

In this paper, we focus on designing distributed nested
arrays with an inter-subarray spacing of L > 5 and do not
extensively explore the case of 2 < L < 4 for two main
reasons:

® Design Complexity: For L < 4, reduced hole ranges
and asymmetric DCA necessitate piecewise optimization of
auxiliary element positions (z) and quantity (7"). This case-
specific approach lacks generalized closed-form solutions,
complicating design scalability.

@ Efficiency Tradeoff: Smaller baselines (L < 4) pro-
vide marginal virtual DOF gains at disproportionate ard-
ware/computational costs. Larger baselines (L > 5) maximize
aperture expansion, fully exploiting distributed nested array
capabilities.

Thus, our work focuses on the generalized design for L > 5,
to simplify the analysis and highlight the core innovations.

Sna1 and Syag, are symmetrically distributed with a base-
line distance D. Given that the hole range in the differential
coarray has been derived in Eq. (16), the central positions of
the holes are expressed as
_ HOLE,,; + HOLE,,y D LM (M +1)

2 B T

where HOLE,,,,; = M(M+1), HOLE,,q = D—M(M+1).

C

As shown in Fig. 1 (c), assume that T consecutive auxiliary
elements are inserted at position x, an auxiliary array is

Samx=[2 z+1 z+T-1] (19)

To ensure complete coverage of HOLE, the insertion
Saux must make {DIFF (s, sxu)+ YUDIFF (s, sxas)+} 2
HOLE hold. Since Spux exhibits two distinct positional
choices during the insertion process, the following sections
will discuss each case separately.

A. When Sp,y is on the left side, i.e., x = 11

The difference cover between Sya1 and Spux spans the left
half-section of HOLE the following holds

[#1 —(M(M +1)—1),2, + T — 1]

20
D [M(M+1):C] 20

The constraints are therefore given by
{xl—(M(M—i—l)—l) < M(M +1), (21a)

The difference cover between Syas and Saux spans the
right half-section of HOLE the following holds

[D—(z1+T—1), D+ M(M+1) —1— 1]

D[C+1:D—M(M+1)] 22
The constraints are therefore given by
D—(x1+T-1)<C+1 (23a)
{D+M(M+1)—1—x12D—M(M+1) (23b)
Simplifying the right-endpoint Eq. (23b) yields
1 <2M (M +1)-1 (24)

Regarding the left endpoint constraint Eq. (21b), which

is z1 + T — 1 > C, we substitute the expression for
LM (M+1)

C = 5 from Eq. (18). Rearranging this inequality
to solve for 7T yields:
LM(M+1
x1 + T —1 Z %
LM(M+1
= e PIED L )

This equation (25) establishes a lower bound for 7. The
implication is that to find the minimum number of auxiliary
elements, T, we must minimize the right-hand side of this
inequality. Since % and 1 are constants (for given L
and M), minimizing the right-hand side requires maximizing
X.

When the equality holds, 7" reaches to its minimum value,
ie., Tinin = M (M +1) — z1 + 1. When this occurs,
should be the maximum value. Additionally, since x; <
2M (M + 1) — 1 in Eq. (21a), it follows that

1 =2M(M+1) -1,

Thuin = %M(MJr 1) = [2M (1) 1] +1
_ (L—4)]\§(M+1) o 06)
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Note that Tp,,, representing the number of auxiliary ele-
ments, must be an integer. The derived expression for Ti,, in
Eq. (26) naturally yields an integer. This is because M (M +1)
is the product of two consecutive integers, which is always an
even integer. Consequently, (L —4)M (M +1)/2 is an integer
(since L — 4 is an integer).

B. When Sy, is on the right side, i.e., © = x5

The difference cover between Syai; and Saux spans the
right half-section of HOLE the following holds

[mz—(M(M+1)—1>, xz—i—T—l}

27

2[C+1:D—-M(M+1)].

The constraints are therefore given by
{:EQ—(M(M+1)—1)<C+1, (282)
xo+T—-1>D—-M(M+1). (28b)

The difference cover between Sya2 and Spux spans the left
half-section of HOLE the following holds

(D= (24T 1), D+ M(M+1) =1 -]

(29)
D2 [M(M+1):C].
The constraints are therefore given by
{D—(a:2+T—1)§M(M+1), (30a)
D+M(M+1)—1—22>C. (30b)
Simplifying the left-endpoint Eq. (30a) yields
xo+T—-1>(L-1)M(M+1) 3D
Regarding the right endpoint constraint Eq. (28b)
xo+T—-1>(L—1)M(M +1) (32)

— T>(L-1)M(M+1)—zy+1.

When the equality holds, 7" reaches to its minimum value,
i.e., Tin = (L —1)M(M + 1) — 25 + 1. When this occurs,
9 should be the maximum value. Additionally, since x5 <
(£ +1) M (M +1)— 1 in Eq. (30b), it follows that

L
Ty = (§+1)M(M+1)—1,

L—-4M(M+1
ro _(L=HMOI+D)
2

Similarly, the expression for Ti,, in Eq. (33) also natu-
rally results in an integer value due to the aforementioned
property that M (M + 1) is always even, ensuring the term
(E=HMMHD) g ap integer

5 .

In summary, given the values of M and L,L > 5 in a
distributed nested array, Ti,i, = %W + 2 auxiliary
sensors can be added at either 1 = 2M (M +1)—1or 25 =
(£ +1) M (M +1) — 1 to effectively fill the holes, thereby
enabling unambiguous DOA estimation.

(33)

C. Subspace-based DOA estimation for distributed virtual
linear apertures

In Sec. III, R; is the covariance matrix of z. However,
since Z represents only a single snapshot, covariance matrix
has rank 1, which indicates that all sources are coherent. To
achieve accurate DOA estimation, it is necessary to reconstruct
a full-rank covariance matrix.

The spatial smoothing method partitions z into several
overlapping subarrays. Assuming that each subarray contains
K antennas, the total number of subarrays is given by
(L+1)M(M +1)— K + 1. The corresponding array sample
covariance matrix of each subarray is given by Zz; is

= =H
R; =%z

(34)

The reconstructed sample covariance matrix for the entire
array is then obtained by averaging the sample covariance
matrices of all subarrays

1 Q
Rucw = = Z R; (35)
Q i=1
where Q = (L+ 1)M(M + 1) — K + 1. The reconstructed
matrix Ry, successfully restores the full-rank structure,

enabling reliable DOA estimation through standard subspace-
based algorithms (MUSIC or ESPRIT) [1].

V. PERFORMANCE ANALYSIS

We now assess the performence of the proposed method. It
is important to note that the effectiveness here refers to the
spectrum of MUSIC.

As show in Fig. 2, We selected M = 2, L = 5, and
by calculation, we can get 7' = 5, and select the left
insertion position x1 = 11. Among them, (a) is Spisna U
Sauxs (b) is DIFFs,, s+, (€) is DIFF(s,,, 54,0+ (d) is
DHFF(SAuxygNAZ)"F’ (e) is DHFF(SDisNA7SAux)+'

(a)

¥ T

0.5 A

@@@@?ISQQQQ
25 30 35

25 30 35

[ ——

30 35

0 5 10 15 20
(e)

%TTT?:.oo?l????L????L?ooo;ooo?l?ooo;

Fig. 2. Arrays structure
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A. Effectiveness

MUSIC is used to verify the effectiveness of the proposed,

SNR = 0 dB, angle is [—50° : 25° : 50°]

Magnitude in dB

-25 -

proposed in this paper achieves an estimation performance
close to that of ULA with the same aperture size by using a
smaller number of array elements, so reducing hardware cost
and complexity.

VI. CONCLUSION

This paper proposed an unambiguous hole-filling method
for large-baseline distributed nested arrays by strategically
inserting a continuous auxiliary array. We derived closed-
form expressions for the minimum number of auxiliary
elements and their optimal placement to ensure a hole-
free difference coarray. This reconstruction enables high-
resolution, ambiguity-free DOA estimation. Numerical sim-
ulations demonstrated that our approach effectively eliminates
angular ambiguities and achieves DOA estimation accuracy

|
|
|
!
-30 - |

---------- MUSIC-Distributed
Proposed

***** al

e r————d

-35
-50 -25 0 25 50

Degree

Fig. 3. MUSIC spectrum for DOA estimation.

Fig. 3 shows that when SNR = 0 dB, Spisna directly
performs MUSIC, which will produce a large number of
pseudo peaks. The proposed method can construct a hole-
free virtual ULA, eliminating the holes and achieving high-
precision DOA angle estimation.

B. Estimation performance

The SNR varies in the range of [—-8dB : 2dB : 10dB]. The
angle is [—50° : 25° : 50°]. The proposed array uses MUSIC
and ESPRIT algorithms for DOA estimation. We compare its
estimation performance with the traditional dual-scale ESPRIT
(DS-ESPRIT) algorithm [14], [15] and the ULA of the same
aperture size using the MUSIC algorithm.
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Fig. 4. RMSE versus SNR.

Fig. 4 shows that the proposed method, has better perfor-
mance than the traditional DS-ESPRIT algorithm when using
MUSIC and ESPRIT, but slightly worse than those of the
ULA that has the same aperture size. However, the algorithm

comparable to a ULA with an equivalent aperture.
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