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Abstract—The fluid antenna (FA) array leverages the spatial
degrees of freedom in constrained environments while signifi-
cantly reducing hardware layout complexity and costs. In this
paper, an FA array enabled direction-of-arrival (DOA) estimation
method for the hybrid analog-digital (HAD) architecture under
the nonuniform noise is proposed. In this setup, the antenna
array is moved to different positions within the constrained
area, the corresponding received signals are collected, and then
enabling high-precision and low-cost DOA estimation. Different
from existing approaches using the HAD array output directly,
an efficient covariance matrix reconstruction scheme is first
exploited to recovers the large-scale array covariance matrix;
and then, the iterative least-squares subspace estimation (ILSSE)
technique is applied to eliminate the unknown uniform noise;
finally, the the multiple signal classification (MUSIC) algorithm
is applied for DOA estimation. Simulation results validate the
superiority and effectiveness of this approach in terms of both
accuracy and efficiency.

Index Terms—Fluid antenna (FA) array, hybrid analog-digital
(HAD) architecture, direction-of-arrival (DOA) estimation, co-
variance matrix reconstruction, nonuniform noise.

I. INTRODUCTION

The sixth-generation (6G) mobile communication system
is widely regarded as providing revolutionary support for
future communications [1]. It is expected to achieve data
transmission rates at the Terabits per second (Tbit/s) level,
and support centimeter-level positioning accuracy to meet
the demands of emerging applications such as autonomous
driving, immersive interactive experiences, and virtual reality
[2]. As a key sensing technology, direction-of-arrival (DOA)
estimation plays a crucial role in enabling these applications
and meeting the associated requirements [3].

To meet the ultra-high accuracy requirements for estimation
in various future application scenarios, massive multiple input
multiple output (M-MIMO) or ultra-massive MIMO antenna
arrays are typically deployed at sensing nodes such as radars
and base stations (BSs), leveraging their high spatial resolution
advantages. However, various hardware limitations hinder the
application of traditional fully-digital array [4]. To address
this issue, the hybrid analog-digital (HAD) architecture has
become an effective solution, which maintains system perfor-
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mance while reducing the number of radio frequency (RF)
chains. This approach has been widely studied in [5]-[8].

Fluid antenna (FA) technology is an emerging approach to
enhance full-space performance, enabling flexible adjustment
of antenna positions in certain continuous space to better
exploit spatial degrees of freedom (DoFs), in comparison with
the traditional fixed position antenna (FPA) arrays [9]-[14]. So
far, several FA enabled methods have been proposed to demon-
strated their advantages in wireless sensing [15]-[17], such as
enhancing beamforming design, spectrum sensing and secure
wireless communication, etc. However, it is necessary to point
out that less attention has been paid on DOA estimation. As a
major focus for future advancements in FA, DOA estimation
technologies enabled by FA will be essential in fields such as
wireless communication, radar, and sonar detection, offering
considerable potential value.

In this paper, a DOA estimation method enabled by an
FA array in the presence of unknown nonuniform noise is
proposed. In comparison with uniform noise, unknown nonuni-
form is more likely to affect the separation between the signal
and noise subspaces, leading to a more serious impact on DOA
estimation [18]-[20]. Unlike the antenna movement patterns in
most existing FA systems, we employ an array-level mobility
approach combined with hybrid analog-digital connections,
which can significantly reduce both hardware overhead and
the complexity of physical movement implementation. By uti-
lizing observation data from different positions to reconstruct
the covariance matrix of the equivalent digital antenna array,
and applying the iterative least-squares subspace estimation
(ILSSE) technique to eliminate nonuniform noise, an improved
DOA estimation is finally provided by the MUSIC algorithm
is applied. Simulation results demonstrate the effectiveness of
the proposed method efficiently.

II. SYSTEM MODEL

As shown in Fig. 1, we consider the application of FAs
in the uplink of a wireless communication system. In this
configuration, the BS deploys a FA array with the capability
to freely adjust the array’s position, and a sub-connected HAD
architecture is used to connect the antenna array with the RF
chains for DOA estimation of L users. We adopt an array-level
mobility approach, where the N FAs within the array move
synchronously along a 1-D DOA within the confined region.
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Fig. 1. FA array-assisted HAD architecture.

Assume that the FA array moves K times for spatial
sampling, then the received signal at the k-th position can
be expressed as

Y, = H,PY?S + N, (1)

where S stands for the transmitted pilot symbol matrix, the
pilot symbols are orthogonal to each other, satisfying SS* =
I,. P2 =diag {\/p1,...,/DL} is the power matrix, which
encapsulates the transmission power of each user. Ny, is the
zero-mean additive Gaussian nonuniform noise, whose each
row obeys n ~ CN(0,Q). Q = diag{o?,...,0%} is the
noise covariance matrix, where O',QL corresponds to the noise
power at the n-th sensor.

For simplicity, we consider the line-of-sight (LoS) prop-
agation scenario and adopt a channel model based on far-
field responses. Additionally, we focus on a quasi-static fading
block, where the position changes of the FA array do not
affect the DOA and the magnitude of the complex coefficients
for each channel path. With these reasonable assumptions, the
channel matrix from the user to the FA array can be expressed
as Hy = A, A, where A = diag{~y;,---,v1} consists of the
path gains of complex multipath channel. Aj represents the
array manifold matrix, which varies with the position of the
FA array. The array manifold matrix at the k-th position of
the FA array can be expressed as

Ay =[ar(01,01), - ,ar(0r,0L)]. 2

In specific, the FA array is configured as a uniform planar array
(UPA) composed of N, x N, FAs, whose corresponding array
manifold vector can be expressed as

ai(0r, ¢r) = ar, 2 (0o, de) @ a,.(0r, br) (3)
with

ak,z(eb (bé) :[eg‘2wdm sinﬁcosd)/)\) e
. 7ej?Tr((]Vm—1)(1-‘rdk)) sin9005¢/)\]T (4)

ak,z(94,¢>e) — [1’_”7€j27r(szl)dsin¢/)\]T )

where ® denotes the Kronecker product, A refers to the carrier
wavelength, d = \/2 the inter-element spacing, and dj, the
distance from the initial position.

Defining the equivalent transmitted signal S = AP/2S, we
can rewrite the received signal in (1) as

Y, = A, AP?2S + N, = A;S + N,. (6)

Consequently, by summing the received signals of the FA
array at K positions, we can obtain the received signal of the
equivalent large virtual array as

YT=AS+N (M

where Y = [¥7,...,Y%]", A = [AT,...,A%]", and
N=[NT,...,.N%]".
Denote R to be the spatial covariance matrix (SCM) of

virtual array, then the overall SCM can be divided into

Rii R Rk
" R2,1 R2,2 RZ,K

R = E{TT } = . . . (8)
Rk1 Rko Rk

where Ry, k, = E{Y;, Y} € CV*V is the sub-SCM of
virtual array. We can utilize R along with subspace algorithms
for DOA estimation. However, the signal received by the FA
array undergoes selection, analog combining and sampling. As
a result, the final output of the FA array can be given by

Y =[v7,...,YE]" 9)

where Y, = wi Y, represents the output of the FA array
at the k-th position. wy, = s © my, is the analog combining
vector with ® standing for the Hadamard product. s; is a
binary switch vector that represents the selection function of
the switches. my, = [e/*1,.. . e/*N] is the phase shift
vector, with 0 < o, ,, < 27 denoting the phase shift coefficient
of the phase shifter.

It can be seen that although the use of the HAD architec-
ture reduces hardware overhead, the array scale is reduced
significantly, preventing us from obtaining the SCM R of the
virtual array directly. In what follows, we will first introduce
an efficient method to reconstruct a SCM, and then apply it
for satisfactory DOA estimation.

III. PROPOSED METHOD

Denote f{khkz as the reconstructed submatrix correspond-
ing to the block Ry, x,. We first reconstruct the diagonal
elements of the sub-covariance matrix. When reconstructing
the n-th diagonal element, only the n-th FA is connected, and
the phase shift coefficient of the phase shifter is adjusted to 0.
At this point, the analog combining vector w will be a vector
of all zeros, with only the n-th position set to 1. Define b,
as a vector of all zeros except for the n-th position, which
is 1, ie, b, = [0,0,---,1,---,0]", where the 1 is at the
n-th entry. Then the n-th diagonal element of Ry, x, can be
reconstructed as

Ri, 1, (n,n) = bRy, 1,bn = R,y (10)

and the remaining N? — N elements appear in pairs. For
each pair of off-diagonal symmetric elements Ry, x, (1, m)
and Ry, k,(m,n), we solve them jointly. Reconstructing this
pair of elements requires two transformations of the analog
combining vector vector. In the first transformation, we only
connect the n-th and m-th (1 < n # m < N) FAs, and set the
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phase shift coefficients of the phase shifters at both antennas
to 0. At this point, the analog combining vector w will be a
vector of all zeros, with only the n-th and m-th position set
to 1, which can be expressed by b,, + b,,. We than have

Rn,m = (bn + bm)HRkl,kQ (bn + bm)
= Rkl,kg (n, n) + Rkl,kz (77,, m) + Rkl,kg (m, n) (11
+ Rk17k2 (m’ m)

In the second transformation, the phase shift coefficients of
the phase shifters connected to the n-th and m-th antennas
are adjusted to o and —a, o € (0, g), respectively. At this
point, the analog combining vector w can be expressed as
b,,e 7% + b,e?®, we have

Rin = (bme 1 + bne?) Ry, 1, (brne ™ + bjel®)

= Ry ks (n7 n) + e_ﬂaRh k2 (n’ m)
+ e Ry, k, (M, 0) + Ry, (1, m).
(12)

Since the diagonal elements of Ry, », have already been

obtained in advance based on (10), we can simplify and solve
equations (11) and (12) simultaneously via

= 13)

e_jQQR/ﬁJ% (7’L, m) + ejQQRkl,kz (mv TL) = ﬁm,n
Rkhkz (na m) + Rkl,kg (m, ’IL) = Rn,m,

Equation (13) admits the following matrix-vector represen-
tation
Er, =c, (14)

e _ Rkl,kz(nam) _
1 1 ] e {Rm@ (m,n)| 24 € =

—J2«
where E = [e

Em,n
n,m
obtain a non-singular invertible matrix E. Then, the closed-
form expression for the reconstructed off-diagonal elements of
Ry, x, can be written as

/Rkl7k2 (n7 m) = p(ﬁm,n: ejzaj%:g,m)
Rkl;k?Q (m’ n) = p(e_jQ(an,m - Rm,n)

. It is clear that by ensuring e/2% # ¢772% = 1, we can

15)

where p = 1/(e792% — /29,

By iterating n and m from 1 to /N, we can reconstruct all
the elements of the sub-SCM. Subsequently, according to (8),
we aggregate all sub-SCMs to obtain a NK x NK matrix
R. By comparing to an FPA array with the same number of
physical antennas, the dimensionality of reconstructed SCM
is expanded by a factor of K, allowing for the resolution of
more DOAs and more accurate estimation performance.

With available R, we next to eliminate the impact of
unknown nonuniform noise. The ILSSE technique is exploited
here, whose corresponding object function can be formulated
as the following optimization problem

min [R — AR, A" — Q| (16)

where || - ||% denotes the Frobenius norm, Ry represents the
signal covariance matrix.

Note that A and Q are unknown variables, to solve formu-
lation (16) efficiently, we rewrite it as

e H 2
min [R - UU - Qlfr (17)
where U denotes the signal subspace which spans the same
column space as A.

The alternating iterative strategy is adopted, let ij_l rep-
resents the estimation of the signal subspace at the (p — 1)-th
iteration, then the estimation of noise covariance matrix at the
p-th iteration can be written as

Q,=DPR-0,, U1, (18)
where D (-) returns the diagonal matrix of the bracketed term
and the estimate of U can be updated as

U,=E,2° (19)
where f)p represents the diagonal matrix composed of the L
largest eigenvalues from the eigenvalue decomposition (EVD)
of R — Qp, and Ep denotes the corresponding eigenvectors.
The iteration terminates when ||U, — U,_1[|% < 9 or |Q, —
Qp,1||% <1, where ¥ or ¥ is a small value defined by the
user.

It is important to note that, according to the subspace
theory, after performing the EVD of R — Qp, the subspace
spanned by the eigenvectors corresponding to the remaining
small eigenvalues represents the noise subspace. Let E’ denote
the estimate of such a subspace, consequently, DOAs can be
determined by finding the L largest peaks in following MUSIC
spectrum function:

1
afl (0,¢)E'E'7a (0, ¢)

where a (0,¢),0 € [-180°,180°],¢ € [—90°,90°] is the
searching steering vector.

Pyusic = (20)

IV. SIMULATION RESULTS

In this section, we validate the effectiveness of the proposed
method by numerical simulations. The root-mean-square-error
(RMSE) of DOA estimation obtained from 500 Monte-Carlo
trials are used to evaluate the estimation performance. The
user’s transmit power is set to 1, and the path gain coefficient
is randomly generated between O and -5 dB. The signal-to-
noise ratio (SNR) and the worst noise power ratio (WNPR)
in nonuniform noise are respectively defined as SNR =
NN 62/02 and WNPR = o2, /02 . where o2
denotes the signal power, 02, and o2 are the maximum
and minimum values of the noise power, respectively. In the
proposed method, @ = 7/8, ¥ = 104 are preset, and QO is
initialized with D(R).

In the first simulation, eight source signals are considered to
impinge on the FA array at different angles, with the incident
azimuth and elevation DOAs randomly generated from the
range [—50°,50°]. Without loss of generality, the movement
pattern of the FA array is set to random movement, with
the distance of each movement randomly generated within

1449



— ©—-FD array
- - -CRB-FD
R FA array
N - 5— -CRB-FA
100 F N E|
\
\
\
\
— % \
= \
W FIzoL O
210 e T E
= VS ::%\\\\\
‘V\\::%\:\\\
V\:\\\%\
102 ¢ R T
V=3z~_%
SIIy
Y
102 \ \ \ \ |
-10 -5 0 5 10 15 20
SNR(dB)
Fig. 2. RMSE of DOA estimation versus SNR.
= ‘
N —©--N=12
\ —%—-N=18
\
\
\
\
\
\
\
ak\ \
N \
> NN
AN \
% \\ ®\
E N \\
o N
\\\ S
10k ~L e 1
~ ~
N <
* RN
\\\ \S\
Twl TS
~<_ o
14 16 18 20 22 24 26 28
K

Fig. 3. RMSE of DOA estimation versus K.

the range of [0.15\,0.45)\], and the number of movements
is set to 24. The FA array is configured with 16 antennas,
with 2 antennas arranged along the z-axis and 8 antennas
along the z-axis. For comparison, a fixed fully-digital (FD)
array with the same constrained area is also deployed, with
element spacing set to half of the wavelength. As shown in
Figure 2, the RMSE of both arrays steadily decreases with
increasing SNR. In comparison, the FA array demonstrates
significantly better estimation performance than the traditional
FD array. This indicates that the FA array can greatly enhance
the utilization efficiency of the spatial DoFs in the constrained
area, while the hardware overhead of the designed FA array
is much lower than that of the FD array.

In the second simulation, two FA arrays are configured
with 12 and 18 FAs, respectively, to study the relationship
between estimation performance and the number of move-
ments. The other simulation configurations are the same as
the first simulation. As shown in Figure 3, when the SNR is
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Fig. 4. RMSE of DOA estimation versus WNPR.

fixed at 0 dB, the RMSE steadily decreases as the number
of movements increases, indicating that the FA array can
fully utilize limited spatial DoFs. Furthermore, under the same
number of movements, the performance of the 18-element FA
array is significantly better than that of the 12-element FA
array, suggesting that larger antenna arrays can perform spatial
sampling more efficiently. Although increasing the number
of antennas increases hardware costs, it clearly enhances the
efficiency of spatial DoFs utilization, allowing for the full
use of spatial DoFs in the constrained region with fewer
movements. In this study, the FA array moves along only one
dimension. However, it is foreseeable that a system where the
FA array can move simultaneously in two dimensions will
further improve estimation performance.

In the last simulation, by adjusting the number of move-
ments and the SNR, we test the robustness of the proposed
methods against the non-uniformity of sensor noises. The
other simulation configurations are again the same as the first
simulation. As shown in Figure 4, the performance of the
proposed method remains nearly unchanged with the increase
of WNPR under various configurations, showing its great
robustness against nonuniform noise.

V. CONCLUSION

This paper has presented a high-precision DOA estimation
method for FA array-assisted HAD architecture in the presence
of nonuniform noise. In specific design, we adopt an array-
level mobility approach to move to different positions for
comprehensive spatial sampling and increased DoFs. Instead
of using FA-HAD array output directly, an efficient strategy
to reconstruct the large-scale SCM from the observed data
is investigated, which provides an important guarantee for
high-performance DOA estimation. Considering the impact of
unknown nonuniform noise, the ILSSE technique combined
with the MUSIC algorithm are jointly applied, which finally
provide an improved DOA estimation result, as verified by
simulations.

1450



REFERENCES

[1] X. Chen, J. Tan, L. Kang, F. Tang, M. Zhao and N. Kato, “Frequency
selective surface towards 6G communication systems: A contemporary
survey,” IEEE Commun. Surveys Tuts., vol. 26, no. 3, pp. 1635-1675,
Feb. 2024.

[2] Z. Wei, F. Liu, C. Masouros, N. Su, and A. P. Petropulu, “Toward multi-
functional 6G wireless networks: Integrating sensing, communication,
and security,” IEEE Commun. Mag., vol. 60, no. 4, pp. 65-71, Apr.
2022.

[3] K. Xu, X. Xia, C. Li, C. Wei, W. Xie and Y. Shi, “Channel feature
projection clustering based joint channel and DoA estimation for ISAC
massive MIMO OFDM system,” IEEE Trans. Veh. Technol., vol. 73,
no. 3, pp. 3678-3689, Mar. 2024

[4] Z. Hu et al., “PRINCE: a pruned AMP integrated deep CNN method
for efficient channel estimation of millimeter-wave and Terahertz ultra-
massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 22, no.
11, pp. 8066-8079, Nov. 2023.

[5] H.Li, J. Gong, and W. Cheng, “Hybrid beamforming design and signal
processing with fully-connected architecture for mmWave integrated
sensing and communications,” J. Commun. Inf. Netw., vol. 9, no. 2,
pp. 151-161, Jun. 2024.

[6] S. Tarboush, A. Ali, and T. Y. Al-Naffouri, “Cross-field channel esti-
mation for ultra massive-MIMO THz systems,” IEEE Trans. Wireless
Commun., vol. 23, no. 8, pp. 8619-8635, Aug. 2024.

[71 H. Hojatian, Z. Mlika, J. Nadal, J. -F. Frigon, and F. Leduc-
Primeau, “Learning energy-efficient transmitter configurations for mas-
sive MIMO beamforming,” IEEE Trans. Mach. Learn. Commun. Netw.,
vol. 2, pp. 939-955, Jun. 2024.

[8] Y. Chen, L. Yan, C. Han, and M. Tao, “Millidegree-level direction-
of-arrival estimation and tracking for terahertz ultra-massive MIMO
systems,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 869-883,
Feb. 2022.

[9] T. Wu, et al.. ”Fluid antenna systems enabling 6G: Principles, ap-
plications, and research directions.” arXiv preprint, arXiv:2412.03839,
2024.

[10] J. Yao, J. Zheng, T. Wu, M. Jin, C. Yuen, K.-K. Wong, and F. Adachi,
“FAS-RIS communication: Model, analysis, and optimization,” IEEE
Trans. Veh. Technol., early access, doi:10.1109/TVT.2025.3537294,
2025.

[11] Z. Xiao et al., “Channel estimation for movable antenna communication
systems: A framework based on compressed sensing,” IEEE Trans.
Wireless Commun., vol. 23, no. 9, pp. 11814-11830, Sep. 2024.

[12] W. Ma, L. Zhu and R. Zhang, “Compressed sensing based channel
estimation for movable antenna communications,” IEEE Commun Lett.,
vol. 27, no. 10, pp. 2747-2751, Oct. 2023.

[13] J. Yao et al., “Exploring Fairness for FAS-assisted Communication
Systems: from NOMA to OMA,” IEEE Trans. Wireless Commun., early
access, doi:10.1109/TWC.2025.3531056, 2025.

[14] J. Zheng T. Wu, X. Lai, C. Pan, M. Elkashlan, and K.-K. Wong, “FAS-
assisted NOMA short-packet communication systems,” IEEE Trans.
Veh. Technol., vol. 73, no. 7, pp. 10732-10737, Jul. 2024.

[15] W. Ma, L. Zhu and R. Zhang, “Movable antenna enhanced wireless
sensing via antenna position optimization,” [EEE Trans. Wireless
Commun., vol. 23, no. 11, pp. 16575-16589, Nov. 2024.

[16] J. Yao et al., “FAS-driven spectrum sensing for cognitive radio net-
works,” IEEE Internet Things J., early access, doi:10.1109/JI0T.2024.
3518623, 2024.

[17] J. Yao et al., “Proactive monitoring via jamming in fluid antenna
systems,” [EEE Commun. Lett., vol. 28, no. 7, pp. 1695-1702, Jul.
2024.

[18] H. Xu, M. Jin, Q. Guo, T. Jiang and Y. Tian, “Direction of arrival es-
timation with gain-phase uncertainties in unknown nonuniform noise,”
IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 6, pp. 9686-9696,
Dec. 2023.

[19] K. Guo, L. Zhang, Y. Li, T. Zhou and J. Yin, “Variational bayesian
inference for DOA estimation under impulsive noise and nonuniform
noise,” IEEE Trans. Aerosp. Electron. Syst., vol. 59, no. 5, pp. 5778—
5790, Oct. 2023.

[20] C. Wen, X. Xie, and G. Shi, “Off-grid DOA estimation under nonuni-
form noise via variational sparse bayesian learning,” Signal Process.,
vol. 137, pp. 69-79, Aug. 2017.

1451



