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Abstract—Due to the communication and sensing capability
limitations of the unmanned aerial vehicle (UAV) formation, the
performance of distributed jamming resources optimization tends
to be unsatisfactory. To address the problem, this paper uses the
collaborative multi-agent reinforcement learning method to
significantly improve its performance. Meanwhile, the UAV has
weak communication capabilities and is easily destroyed, which
can lead to network disconnection and communication failure.
Considering that most existing multi-agent reinforcement
learning methods rely on neural network fitting of agent
strategies and lack adaptability to changes in the number of agent
nodes, this paper extends and optimizes the agent's policy
network by leveraging the permutation equivariance of HPI and
the permutation invariance of HPE to adapt to changes in UAV
nodes and interference targets. Through simulations, it has been
verified that the method proposed significantly improves the
performance of distributed optimization and its adaptability to
dynamic environments.
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I. INTRODUCTION

In recent years, the intelligent jamming decision has
gradually become a research focus of electronic warfarel!l,
Based on the reconnaissance and perception of the battlefield, it
forms a comprehensive situation analysis of the battlefield. At
the same time, it employs optimization algorithms to form
efficient distribution and utilization of the limited jamming
resources, achieving effective and stable jamming capabilities,
thus improving the perception and countermeasure capability in
the complex electromagnetic environment!?» Bl Aiming at the
insufficient prior information on both sides in the actual combat
environment, which leads to deficiency in the real-time
performance of traditional intelligent optimization algorithms,
the reinforcement learning method has gradually been widely
applied in the field of intelligent electronic warfare with its
characteristic of relying on no prior knowledgel*. Zhang Bokai
et al. proposed a multi-function radar cognitive jamming
decision system, and analyzed the supportive application of
reinforcement learning and deep reinforcement learning to the
system through combining the circumstance of limited prior
knowledge under battlefield confrontation®); Rao Ning et al.
proposed a decentralized jamming resources allocation
algorithm based on multi-agent deep reinforcement learning
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(MADRL) to improve the efficiency of the allocation of
jamming resources in the electronic countermeasures!®l.

In practice, the jamming system encounters multiple hostile
radars, and it needs to quickly establish cognitive relationships
with threat targets and dynamically schedule jamming resources.
Meanwhile, as the scale of the UAV jamming formation
expands, the overall communication resources of the system are
in short supply as a result of the communication and sensing
capability constraints, which requires optimized decisions to
achieve efficient jamming and communication resources
allocation. Based on this problem, this paper designs a
distributed decision-making method under constrained
communication to achieve the overall distributed interference
performance of the system.

In addition, UAVs have weak survivability and are prone to
network disconnection and communication failure in complex
electromagnetic environments. At the same time, when the
formation deepens its knowledge of the environment, it may
perceive new jamming targets, resulting in a change in the
number of decision nodes and mission targets, thereby posing
challenges to the application of existing online learning
algorithms in multi-agent networks. Multi-agent reinforcement
learning fits agent strategies or value functions through neural
networks that take environment states or agent observations as
inputs and output agent actions or Q-values corresponding to the
actions. In an adversarial scenario, the dynamic changes in the
number of drone nodes and jamming target radar nodes in the
cluster network will simultaneously cause changes in the
observation dimension, action dimension, and environment
state dimension of the agent. To adapt to these changes, not only
should the neural network structure be adjusted, but the agent
strategy also needs to be retrained.

However, this series of adjustments significantly increases
the computational burden of the algorithm, making it difficult to
meet the real-time requirements of practical adversarial
applications. Currently, research on expandability mainly
focuses on network structures such as Deep Sets, Self-Attention,
and GNN. These networks independently extract input features
through shared modules and aggregate them in a specific way to
satisfy permutation invariance while adapting to input
dimension changes. Permutation invariance captures the
characteristics that the state and observation information are
independent of the order of entities, which improves the

EUSIPCO 2025



learning efficiency of the algorithm to a certain extent. However,
in most real scenarios, changes in the number of entities will
change the dimensions of both the neural network inputs (state
and observation) and outputs (actions). Therefore, to deal with
variability issues such as the variable length input and output
problem and permutation isotropy, expandability optimization
is carried out in this paper. Specifically, by introducing the HPI
layer and the HPE layer, and embedding adaptive
variable-length input modules with permutation isotropy and
adaptive variable-length output modules with permutation
invariance in the QMIX algorithm, the agent strategies can
effectively adapt to dynamic changes in the number of entities.
The specific contributions are as follows:

1. A multi-factor jamming resources allocation model is
constructed based on confrontation scenarios. Combining
communication resource constraints, a collaborative multi-agent
strategy learning method based on Expandability-QMIX

(E-QMIX) is proposed. By decomposing the global hybrid
Q-function into local Q-functions for each UAV node, the
jamming decision problem in the large interference action space
and radar state space is effectively solved, and the efficiency of
jamming decision is improved.

2. Two types of neural network modules are designed to
adapt to variable-length inputs and variable-length outputs.
QMIX is improved to enhance the algorithm's ability to adapt to
states, observations, and actions in variable-length dimensions,
so that the overall network structure of the algorithm is
independent of the number of nodes, and there is no need to
change the structure of the network for retraining when the
number of nodes changes. At the same time, the permutation
isotropy of the inputs and the permutation invariance of the
outputs are ensured to improve the efficiency of the algorithm
for sample training in fixed-size tasks.

II. COOPERATIVE-JAMMING MODEL

As shown in figure 1, this paper investigates the scenario of
flight formation consisting of UAV clusters and manned aircraft
to break through ground-based group network radars. The whole
breakout period is uniformly divided into multiple equal-length
time slots, which is convenient for discrete processing and
analysis. The UAV detects the radar detection beam and
schedules the UAV in its communication range to cooperatively
transmit the interference beam in real time to reduce the
effective detection beam of the radar. Therefore, the goal of this
paper is to maximize the overall interference benefit of UAV
swarm under communication constraints through interference
decision optimization.

Grouping flight direction

Fig. 1. Diagram of UAV cluster cooperative jamming network radar

In this scenario, it is assumed that all radars in the M unit are
in search mode and the detection capability of the radar system
is directly limited by the performance of its target detectors.
Therefore, the UAV only needs to form effective jamming on
the target detector by detecting the signals emitted by the radar
and allocating the jamming resources for modulation and
forwarding, then it can be considered as an effective jamming on
the radar system as a whole. In this paper, the number of radars
effectively jamming m’" is chosen as an efficiency index to
assess the effectiveness of jamming decision!”). Firstly, referring
to the radar equation, it is known that the target echo power
received by the single station radar m is:
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" (4r)RL
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In the formula, R, is the distance from the radar m to the

target n . From the reconnaissance equation, the jamming power
of the UAV n jamming signal received by the radar m is(®l:

2
P,G,G 2

J = e
(4r)’ R:ij

mn K (97’1” ) e _0.235R”1” (2)

In the formula, @, is the tensor angle between the protected
target and the UAV relative to the radar m , K(6, ) is the

jamming direction mismatch loss. Suppose that the effects of
noise and clutter can be ignored. Combining equation (1) and (2),
the total average interference-signal-ratio jointly generated by
blanket jammers to the radar m is:
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Assume that the interference-signal-ratio to meet effective
interference requirement, namely the blanket coefficient, is K,

and that the jamming effectiveness is the probability that the
total average interference-signal-ratio is greater than or equal

to K, . Thus, the probability of jamming effectiveness of blanket

jamming on radar is:
Ej.vm =1- eXp(_ jSm ) (4)
K,

Combined with the radar network structure, the probability
of effectively jamming all radars can be obtained as

M
Pjam = HEJ'A‘W! (5)

where M is the total number of radars to be jammed. The
number of effectively jammed radars can be obtained as

M
m =3 E,, (©)
m=1

In the UAVs and multi-radar confrontation mode, the UAV
may belong to the one-to-one mode as well as the many-to-one
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or many-to-many mode under a certain time slot. Therefore, the
average probability of effectively jamming any radar is selected
as a quantitative index to evaluate the jamming effectiveness
and is expressed as:

p=—L (7)

Referring to Equation (5)-(7), the assessment function of
jamming effectiveness designed in this paper requires the
probability that the number of effectively jammed radars is

larger than or equal to the required number 7, and is expresses

as.:
ul k pk N -k
E, =Y CiP'(1-P)" (8)
k=n

III. DISTRIBUTED OPTIMIZATION ALGORITHM BASED ON
COOPERATIVE MULTI-AGENT REINFORCEMENT LEARNING
A. Distributed locally observable markov process modeling
The agents established in this paper are fully collaborative!!
and thus can be represented as (S,U,{0"} _,,A4,R,P) : for
each time step ¢ , the environment information is characterized

neN?

by the state s, €S and each agent n € N gets an observation

n

o . Subsequently, according to the policy 7"(a, |o]')
0" x A" —[0,1] , the agents select to get the action a’ € 4" .
All the agent actions form a joint action which denotes as

1 2 N
a, =la,,a,..,a

'] . The environment transition probability

function P(s,,, |s,,a,) transfers to the state s,,, at the next
moment. At the same time, the multi-agent in a fully cooperative

state will receive a common reward 7, . The goal of multi-agent

reinforcement learning is to obtain the joint optimal policy of all
the agents, maximizing the expected long-term cumulative

reward [ R(%)= ZL y'r, . Where @={n"},_, represents

the set of strategies of all the agents and represents the reward
discount factor.

B. Collaborative multi-agent decision-making based on
E-OQMIX algorithm

In the actual confrontation, the number of UAV nodes and
the number of interference targets in the cluster are easy to
change, which puts forward higher requirements for the
scalability of the distributed optimization algorithm. By
introducing an automatic weight generation mechanism on the
basis of the FC layer, the HPI layer and the HPE layer realize the
dynamic adjustment of the dimension of the weight matrix to
adapt to variable-length input and variable-length output.

Among them, the HPI layer satisfies the permutation
invariancel'”. Its specific implementation is to introduce a

supernetwork HN. (-) composed of a single FC layer to

generate the weight value W, =HN, (x’) of each input
element, and then obtain the output of the entire network :

J J
y=> W/.x'=>"HN, (x/)-x’/ ©)
j=1 j=1

The HPE layer satisfies the replacement equivariant!''l. A
similar approach to the HPI layer is used to introduce a
supernetwork HN_ () to generate a weight value

W/ =HN

out out

(x’) that matches the number of output elements,

so each output element y’ = HN_(x/)HPI(x’) is obtained.
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Fig. 2. E-QMIX algorithm framework diagram

Based on the QMIX algorithm!!?), this paper introduces HPI
and HPE modules for extensive improvement, and obtains the
overall framework of the E-QMIX algorithm as shown in Figure
2. Its core idea is to transform the training of the global Q

Identify applicable funding agency here. If none, delete this text box.

function into the local Q function training of each UAV node
agent by means of value function decomposition.
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In multi-agent reinforcement learning, the global optimal Q
function defines that when all agents follow the global optimal

strategy 77 under state s, , the expected long-term cumulative

reward obtained by taking joint action a, is :

0% (s,.a,) =B _.[R(%")|s,,a1=E _.[> ¥, Is,.a]  (10)
=0

Therefore, the optimal joint action is expressed as the action
that maximizes Q*”(s,,a,) . Given the global optimal Q

function, the optimal global strategy 7~ can be expressed as:

a, =argmax Q%" (s,,a, (11)

The global optimal Q function needs to follow the Bellman
optimality principle, so it satisfies the expression :

Q&’E" (St 4 at ) = ES,H eP [’; + 7/ H(}ax Qge" (Sr +1° at +1)] (12)

The local optimal Q function defines the local long-term
expected cumulative reward value obtained by the agent n

according to the local optimal strategy 7" after taking action
a; under local observation o' , which is expressed as follows :

Q' (0,a)=E_.[>y'r" |0/ .a] (13)
t=0

where 7" represents the local reward value obtained by the

action of the agent » under the time slot # . Referring to the
definition of the global optimal strategy in formula (11), it is not
difficult to obtain the expression of the local optimal strategy :

a” =arg max Q" (o/,a,") (14)
The local optimal Q function also follows the optimal
Bellman equation, which is expressed as :

0"(0],a') = Eg,"ep[rtn +ymax Q0" (0, ,a,,))] (15)

i

In the scenario discussed in this paper, all UAV nodes have
the same optimization objectives, so they share global rewards.
On the one hand, according to the global environment state, the
joint action of the agent and the global reward, the global Q
function can be learned by centralized training. However, the
global Q function is difficult to be deployed to each agent in a
distributed manner. On the other hand, the local Q function can
be used to generate the local action of the agent, but it is difficult
to learn the local Q function directly because the local reward of
each agent cannot be obtained explicitly.

In order to solve the above problems, a global Q function can
be trained and decomposed into a local Q function of each UAV
by means of value function decomposition. The specific
implementation method is to use a decomposition function

f%“" to decompose the global Q value into multiple local Q

values. At the same time, in order to ensure the consistency
between the global optimal strategy and the local strategy of a

single agent, the optimal joint action taken by all agents
according to the global optimal Q function should be equivalent
to the local optimal action taken by each UAV node according to
the local Q function. Expressed as :

argmax a,0' (o}, a,
argmax Q*"(s,,a,) = : (16)

n

argmax a, Q" (o;,a,

The formula (16) shows that there is a monotonic relationship
between the global Q value and the local Q value, that is, when
the local Q value rises, the global Q value will also rise.

Therefore, the decomposition function f““" needs to satisfy
the constraints :

I sovneN (17)
00"

C. Network parameter training update

In this paper, centralized training with decentralized
execution architecture (CTDE) is adopted. The network
parameters are trained by end-to-end method. Based on the
Bellman equation of the global Q function, the loss function is
obtained as follows :

Ly O =Bol(" =05 (s,a )] (18)

gen

Yoo =1 +7n3axQ§f" (S1154,01) (19)

where D is the experience playback pool, y** is the Q value of

the target network, and 6~ is the target network parameter of 6,
which is used to calculate the loss function and the soft update of

0.

IV. SIMULATION AND ANALYSIS

In the simulation experiment, the confrontation scene
between the UAV and the ground-based radar is set to a square
area of 200 km x 200 km, and a 200 x 200 grid structure is
constructed by a scaling ratio of 1:1000. The three radar
positions are set to (200,200) (185,200) (200,185). In the initial
state, the five UAVs approached the radar and interfered around
the radar on the premise of ensuring the minimum safe distance
between them. The simulation parameters are set as shown in
Table 1.

In the hyperparameter setting of the E-QMIX algorithm, the
embedding feature of the local Q network and the dimension of
the hidden layer state are set to 128. In the training process, the
maximum number of iterations is set to 3000, that is, up to 3000
time steps. The search probability ¢ of the agent gradually
decreases from 0.9 to 0.05 with the increase of the number of
iterations. The discount factor y of the future reward is 0.9, and

the network parameters are updated by soft update. The learning
rate is set to 0.0025. The maximum storage of the experience
playback pool is 2000 training rounds of experience samples,
and 16 batches of samples will be randomly taken out for
learning during each update. Set the system as a whole to train a
total of 5000 rounds.

1455



TABLE L SIMULATION PARAMETER SETTING

Numerica
Parameter

1 value
length of slot 7 Is
UAV flight altitude /f Skm
The flight speed of UAV }/ 250m/s
Minimum distance between drones Rj 2km
Minimum distance between UAV and radar Rtj 20km
The threshold of communication perception 25dB
Radar transmit power R 150kw
Jammer maximum transmit power [:; max 500w

Comparing the performance of distributed decision
algorithm and centralized decision algorithm, this paper chooses
CQL algorithm!'¥ and E-QMIX algorithm to compare. By
comparing the communication overhead and decision effect of
the two algorithms, the performance of the proposed algorithm
in balancing communication overhead and decision effect is
verified. Figure 4 and Figure 5 are the changes of radar network
detection probability and communication rate during the
training process of E-QMIX and CQL, respectively.

cQL
E-QMIX

Fig. 3. The change curve of radar network detection probability during

training process

Communication overhead comparison between E-QMIX and CQL

Communication overhead comparison between E-QMIX and CQL
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Fig. 4. Communication overhead comparison diagram(kbps)

By comparison, it can be seen that E-QMIX obtains a
smaller state and action space through distributed suboptimal
solution convergence decision, so its strategy is relatively
conservative and less volatile in the optimization process.
Finally, E-QMIX obtains a decision effect similar to CQL while
reducing the demand for communication information rate.

V. CONCLUSION

In this paper, a distributed optimization algorithm based on
cooperative multi-agent reinforcement learning is designed for

the problem of weak communication ability of UAVs and the
change of the number of individuals in the cluster, and its
scalability is optimized to solve the optimization problem of
maximizing the interference effect under the condition of
constrained communication. Through simulation comparison,
the proposed method reduces the demand for a large amount of
communication information and achieves a similar
decision-making effect compared with the CQL algorithm. At
the same time, the scalability of the algorithm has been
significantly improved, and the policy network can better adapt
to the dimension changes of input and output. However, the
proposed method still requires sufficient computational support
to achieve online learning and requires knowledge-assisted
pre-training. The next step still needs to explore the distributed
decision-making method of real-time learning under the
condition of no prior knowledge or small sample.
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