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Abstract—Over the past decade, the difference co-array (DCA)
processing technique based on sparse arrays has attracted signifi-
cant attention given its capability of addressing underdetermined
direction-of-arrival (DOA) estimation problems. ESPRIT-type
methods have been widely studied in this context; however,
their closed-form asymptotic performance analysis for the un-
derdetermined case remains an open problem. In this paper,
the explicit asymptotic performance expression for the co-array-
based standard ESPRIT method is first derived, followed by
the derivation of closed-form performance bound for the co-
array-based unitary ESPRIT (achieving reduced computational
complexity compared to standard ESPRIT method). Simulation
results confirm the tightness of derived performance bounds
compared to the existing Cramér-Rao bound (CRB), providing
an effective evaluation metric for both sparse array design and
performance analysis.

Index Terms—Asymptotic performance analysis, ESPRIT,
DOA estimation, sparse array, difference co-array

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a classical problem
in applications such as radar, sonar, communication and nav-
igation [1]. Subspace-based methods, exemplified by MUSIC
[2], root-MUSIC [3], ESPRIT [4] and unitary ESPRIT [5],
have been a long established approach to high resolution array
signal processing.

However, for conventional processing methods, only N − 1
sources can be resolved by an N -sensor array structure. For
the underdetermined DOA estimation case [6], which involves
resolving more sources than the number of physical sensors,
sparse arrays have been developed, with corresponding differ-
ence co-array (DCA) techniques proposed [7]–[9]. Over the
past decade, the design of sparse arrays has witnessed signifi-
cant progress [10]–[15]. By leveraging the a priori information
that the sources are uncorrelated, a virtual array (referred to as
the DCA) is generated by vectorizing the covariance matrix,
providing O

(
N2

)
degrees of freedom (DOFs) with only N

physical sensors.
Although the compressive-sensing-based (CS-based) meth-

ods are capable of exploiting all DCA information, and thus
achieving a relatively better estimation performance [6], [16],
its large computational complexity limits its usage in real-time
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practical applications; on the other hand, the complexity of co-
array-based subspace methods is affordable. Compared with
ESPRIT-type methods [4], [5], MUSIC-type methods [2], [3]
exhibit superior performance but come with higher complexity,
so overall the ESPRIT-type methods exhibit a balanced trade-
off between performance and complexity.

In terms of performance analysis of the subspace-based
methods, in [17], [18], a solid theoretical foundation for DOA
estimation is established. Based on it, asymptotic performance
analysis of MUSIC and ESPRIT exploiting the DCA concept
were investigated in [19] and [20], respectively. However,
the expressions given in [20] are derived from the “semi-
algebraic” fashioned bias of virtual observation vector, where
the closed-form expressions for fast performance evaluation of
ESPRIT-type methods are still unknown.

In this paper, the asymptotic performance analysis for
ESPRIT-type methods is presented. Firstly, we begin with a
review of the standard ESPRIT and unitary ESPRIT methods
exploiting the DCA concept. Then, a closed-form expression
of the performance bound on DOA estimation of co-array-
based standard ESPRIT method is derived. Finally, the unitary
ESPRIT method is considered due to its further reduced
complexity, and an explicit asymptotic performance bound is
given. As verified by simulations, the derived performance
bounds are sufficiently tight against experimental results,
showing their effectiveness as evaluation tools.

II. SIGNAL MODEL

We consider a sparse linear array with Np isotropic sensors
placed at {lnd}

Np
n=1, where lnd denotes the position of the n-

th sensor and d ≤ λ
2 is the unit inter-element spacing with λ

being the signal wavelength. l =
[
l1d, . . . , lNpd

]T
is a vector

consisting of all sensor positions.
K far-field uncorrelated narrowband sources, modeled as

i.i.d. circularly symmetric complex Gaussian, are considered to
impinge from directions θk ∈ (−90◦, 90◦). The corresponding
source signals are {sk(t)}Kk=1, each with power {pk}Kk=1. The
array output can be expressed as

x(t) = As(t) + n(t), (1)

where x(t) is the observed signal vector, s(t) is the source
signal vector, and n(t) is the zero-mean additive white
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Gaussian noise vector with power σ2
n . The steering matrix

A = exp
(
−j 2π

λ lu
)
∈ CNp×K , where the source directional

vector is defined as u = [sin θ1, . . . , sin θK ].
The covariance matrix of the observed data is

R = E
[
x(t)xH(t)

]
= APAH + σ2

n INp , (2)

where P = diag ([p1, . . . , pK ]) ∈ CK×K is the source signal
covariance matrix, and INp is an identity matrix. Vectorizing
R leads to r = (A∗ ⊙A)p + σ2

n i, where ⊙ denotes Khatri-
Rao product, p = [p1, . . . , pK ]

T , and i = vec
(
INp

)
. After

merging the repeated entries [16], we obtain

r1 = Fr = AUp+ σ2
nFi ∈ CNv×1, (3)

where F ∈ RNv×N2
p is the selection matrix defined in [19].

Nv is the number of consecutive virtual sensors in the DCA,
and the i1-th row vector of the selection matrix is

f(i1,:) = {vec [F(i1)]}T . (4)

The (i2, i3) element in F(i1) ∈ RNp×Np can be expressed as

F (i1)(i2,i3) =

{
1

w(i1)
, li2 − li3 = lv(i1),

0, otherwise,
(5)

where lv(i1), li2 , and li3 are the i1-th element in the consecutive
segment of the DCA, the i2-th and i3-th element in the sensor
position vector l, respectively. w(i1) is the weight function
defined as

w (i1) =
∣∣{(i2, i3) | li2 − li3 = lv(i1)

}∣∣ , (6)

where |·| returns the cardinality of the input set. AU behaves
as the manifold of a large virtual array corresponding to DCA.

The virtual array model consists of only a single snap-
shot, and the spatial smoothing (SS) technique is employed
to recover the rank of virtual source covariance matrix by
dividing the physical array into subarrays, and then followed
by an averaging process. Denote N v as the number of subarray
sensors. The number of subarrays is NSS = Nv −N v +1. The
SS matrix Γ is

Γ =
[
ΓT
1 , . . . ,Γ

T
NSS

]T
, (7)

where

Γi =
[
0N v×(i−1), IN v

,0N v×(NSS−i)

]
. (8)

Without loss of generality, we set N v = NSS, and the
virtual observation data matrix of DCA can be obtained via
matricization as

Xv = matN v,N v
(ΓFr) = AvPA

H
v + σ2

n I. (9)

Here, Av is the steering matrix of each subarray by choosing
its first sensor as the reference, i.e., Av = exp(−j 2π

λ lvu) with
lv = [0, . . . , N v−1]T d. A = mata,b(a) denotes the reshaping
operator that maps a vector a ∈ Cab×1 to a matrix A ∈ Ca×b.
The well-known ESPRIT-type methods can be applied to Xv
for DOA estimation [20], [21].

III. EXPLICIT MSE EXPRESSION OF CO-ARRAY-BASED
ESPRIT-TYPE METHODS

In the following part, we derive an explicit expression for
the mean squared error (MSE) of the DCA-based standard
ESPRIT and unitary ESPRIT methods.

A. Performance Analysis of Co-Array-Based Standard ES-
PRIT

Denote Xv0 = AvPA
H
v as the noise-free version of

the virtual observation matrix. Performing the singular value
decomposition (SVD) leads to

Xv0 = UsΣsU
H
s +UnΣnU

H
n , (10)

where Us and Un are the signal and noise subspaces in the
noise-free case, respectively, while Σs and Σn are diagonal
matrices holding larger K singular values and the rest singular
values, respectively. Denote Ûs = Us+∆Us as the estimation
of signal subspace under the noisy situation. According to [17],
[20], we have

∆Us = UnU
H
n ∆XvUsΣ

−1
s , (11)

where ∆Xv is the perturbation of Xv in (9). The signal
subspace Us is used to form the rotation invariance equa-
tion J1UsΨ = J2Us with Ψ = TΦT−1, where J1 =
[IN v−1,0N v−1] and J2 = [0N v−1, IN v−1] serve as subarray
selection matrices. Φ = diag ([µ1, . . . , µK ]) contains the DOA
information with µk = exp

(
−j 2π

λ d sin θk
)
. We use pT

k to
represent the k-th row in T−1, and qk denotes the k-th column
in T. The estimation error of the eigenvalue of the rotation
invariance matrix is given by [17]

∆µk = pT
k (J1Us)

†(J2−µkJ1)UnU
H
n ∆XvUsΣ

−1
s qk. (12)

Then, we have [20]

∆θk = − λ
2πd cos θk

ℑ
(

∆µk

µk

)
, (13)

where ℑ(·) returns the imaginary part of a complex number.
Unfortunately, this expression is “semi-algebraic” rather than
explicit. In the following, we derive a closed-form MSE
expression of the co-array-based standard ESPRIT method.

Proposition 1: The asymptotic second-order statistics of
the estimation errors (in radians) by co-array-based standard
ESPRIT is

E
(
∆θ2k

)
=

λ2bH
k (R⊗RT )bk

4π2d2 cos2 θkT
, (14)

where

bk = FTΓT (hk ⊗ gk) , hk = UsΣ
−1
s qk ∈ CN v×1,

gT
k = pT

k (J1Us)
†(J2µ

−1
k − J1)UnU

H
n ∈ C1×N v .

(15)

T is the number of snapshots.
Proof: Since vec (AXB) =

(
BT ⊗A

)
vec (X), we have

ℑ
(

∆µk

µk

)
=ℑ

[
pT
k (J1Us)

†(J2µ
−1
k − J1)UnU

H
n ∆XvUsΣ

−1
s qk

]
,

=ℑ
[(
hT
k ⊗ gT

k

)
∆xv

]
= ℑ

(
bT
k∆r

)
,

(16)
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where ∆xv = vec (∆Xv) = ΓF∆r. Then, calculating
E[ℑ2(bT

k∆r)] yields

E
[
ℑ2

(
bT
k∆r

)]
= E

[
ℑ
(
bT
k∆r

)
ℑ
(
∆rTbk

)]
=ℜ

(
bT
k

)
E
[
ℑ (∆r)ℜ

(
∆rT

)]
ℑ (bk)+ (17a)

ℑ
(
bT
k

)
E
[
ℜ (∆r)ℜ

(
∆rT

)]
ℑ (bk)+ (17b)

ℜ
(
bT
k

)
E
[
ℑ (∆r)ℑ

(
∆rT

)]
ℜ (bk)+ (17c)

ℑ
(
bT
k

)
E
[
ℜ (∆r)ℑ

(
∆rT

)]
ℜ (bk) , (17d)

where ℜ(·) returns the real part of a complex number. Next,
we prove the structure of bk as follows.

Lemma 1: Let Bk = matNp,Np (bk), we have jBk =

(jBk)
H , i.e., ℜ

(
BT

k

)
= −ℜ (Bk) and ℑ

(
BT

k

)
= ℑ (Bk).

Proof: According to [19, Lemma 3 and 6] and the
property that vec(abT ) = b⊗ a, we have

jBk = (jBk)
H ⇐ jhk ⊗ gk = Π

N
2
v
(jhk ⊗ gk)

∗

⇔ hkg
T
k = −ΠN v

(
hkg

T
k

)∗
ΠN v

⇔ UsΣ
−1
s qkp

T
k (J1Us)

†(J2µ
−1
k − J1)UnU

H
n = (18a)

−ΠN v

[
UsΣ

−1
s qkp

T
k (J1Us)

†(J2µ
−1
k − J1)UnU

H
n

]∗
ΠN v

,

(18b)

where ΠN v
denotes the anti-identity matrix. The term in (18a)

can be simplified to

UsΣ
−1
s qkp

T
k (J1Us)

†(J2µ
−1
k − J1)

(
I−UsU

H
s

)
=UsΣ

−1
s qkp

T
k (J1Us)

†(J2µ
−1
k − J1)− (19a)

UsΣ
−1
s qkp

T
k

(
Ψµ−1

k − I
)
UH

s . (19b)

According to the property of pT
kΨ = µkp

T
k , we have

pT
k

(
Ψµ−1

k − I
)
= 0. Then, the term in (19b) becomes zero.

To prove the relationship in (18), it is necessary to check

ΠN v
UsΣ

−1
s qkp

T
k (J1Us)

†J2µ
−1
k ΠN v

(20a)

=
[
UsΣ

−1
s qkp

T
k (J1Us)

†J1

]∗
. (20b)

Since µ−1
k = eTkΦ

−1ek (ek is the selection vector with its k-th
element being 1 and others being 0), UsΣ

−1
s UH

s = X†
v0 [18],

Av = UsT, qk = Tek, pT
k = eTkT

−1 [17], and (J1Us)
† =

T(J1Av)
† [22], the term in (20a) is updated to

ΠN v
UsΣ

−1
s qkp

T
k (J1Us)

†J2µ
−1
k ΠN v

=ΠN v
UsΣ

−1
s UH

s Aveke
T
kΦ

−1eke
T
kT

−1T (J1Av)
†
J2ΠN v

=ΠN v

(
AH

v

)†
P−1eke

T
kΦ

−1 (J1Av)
†
J2ΠN v

.
(21)

Similarly, the term in (20b) is[
UsΣ

−1
s qkp

T
k (J1Us)

†J1

]∗
=
[ (

AH
v

)†
P−1eke

T
k (J1Av)

†
J1

]∗
.

(22)

Since ΠN v
Av = A∗

vΦ
N v−1 [19], it is evident that

ΠN v
Av

(
AH

v Av
)−1

P−1

=ΠN v
Av

(
AH

v ΠN v
ΠN v

Av
)−1

P−1

=
(
AT

v

)†
ΦN v−1P−1 =

[ (
AH

v

)†
P−1

]∗
ΦN v−1.

(23)

The relationship in (20) is satisfied if

ΦN v−2 (J1Av)
†
J2ΠN v

=
[
(J1Av)

†
J1

]∗
⇔ ΦN v−2 (J1Av)

†
ΠN v−1 =

[
(J1Av)

† ]∗
.

(24)

Based on ΠN v−1Av1 = A∗
v1Φ

N v−2 (J1Av = Av1), we have

ΦN v−2
(
AH

v1ΠN v−1ΠN v−1Av1
)−1

AH
v1ΠN v−1

=ΦN v−2
(
Φ2−N vAT

v1A
∗
v1Φ

N v−2
)−1

Φ2−N vAT
v1

=
(
A†

v1

)∗
=

[
(J1Av)

† ]∗
,

(25)

which completes the proof of Lemma 1.
According to [19, Lemma 3] and [19, Lemma 4], the term

in (17a) becomes

ℜ
(
bT
k

)
E
[
ℑ (∆r)ℜ

(
∆rT

)]
ℑ (bk)

= 1
2T ℜ

(
bT
k

) [
ℜ (R)⊗ℑ (R)−ℑ (R)⊗ℜ (R)

]
ℑ (bk)−

1
2T ℜ

(
bT
k

) [
ℑ (R)⊗ℜ (R)−ℜ (R)⊗ℑ (R)

]
ℑ (bk)

= 1
T ℜ

(
bT
k

)
ℑ
(
RT ⊗R

)
ℑ (bk) ,

(26)
where W (A,B) is defined as [19, Definition 2]

W (A,B) =

a1b
T
1 · · · aNbT

1
...

. . .
...

a1b
T
N · · · aNbT

N

 , (27)

with A = [a1, . . . ,aN ] ∈ RN×N and B = [b1, . . . ,bN ] ∈
RN×N . Similar for other terms in (17b), (17c), and (17d),
finally we obtain

E
[
ℑ2

(
bT
k∆r

)]
=

bH
k (R⊗RT )bk

T . (28)

Substituting (16) and (28) into (13) completes the proof of
Proposition 1.

B. Performance Analysis of Co-Array-Based Unitary ESPRIT

The unitary pre-processing technique involved in the unitary
ESPRIT method leads to complexity reduction. The symbol
(̃·) is used to represent the unitary pre-processed (forward-
backward averaging) version of an input variable [5], [21],
e.g.,

X̃v =
[
ℜ
(
QH

N v
Xv

)
,ℑ

(
QH

N v
Xv

)]
. (29)

Here, for N v = 2P ,

Q2P = 1√
2

[
IP jIP
ΠP −jΠP

]
, (30)

while for N v = 2P + 1,

Q2P+1 = 1√
2

 IP 0P jIP
0T
P

√
2 0T

P

ΠP 0P −jΠP

 . (31)

Correspondingly, the rotation invariance selection matrices are
J̃1 = ℜ

(
QH

N v−1
J2QN v

)
and J̃2 = ℑ

(
QH

N v−1
J2QN v

)
, and

Φ̃ = diag ([µ̃1, . . . , µ̃K ]) holds information related to DOAs
with µ̃k = tan

(
−π

λd sin θk
)
.
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Proposition 2: The asymptotic MSE of DOA estimation by
co-array-based UESPRIT method is

E
(
∆θ2k

)
=

4λ2cH
k (R⊗RT )ck

π2d2 cos2 θkT(1+µ̃2
k)

2 , (32)

with

ck = KT
(
b̃1k − jb̃2k

)
, K = 1

2

(
I⊗QH

N v

)
ΓF,

b̃k = h̃k ⊗ g̃k =
[
b̃T
1k, b̃

T
2k

]T
, h̃k = ṼsΣ̃

−1
s q̃k ∈ R2N v×1,

g̃T
k = p̃T

k (J̃1Ũs)
†(J̃2 − µ̃kJ̃1)ŨnŨ

H
n ∈ R1×N v ,

where b̃1k, b̃2k ∈ RN
2
v ×1 and b̃k = [b̃T

1k, b̃
T
2k]

T .
Proof: Recalling (12), the perturbation of the unitary

version eigenvalue is

∆µ̃k = p̃T
k (J̃1Ũs)

†(J̃2 − µ̃kJ̃1)ŨnŨ
H
n ∆X̃vṼsΣ̃

−1
s q̃k

= g̃T
k ∆X̃vh̃k =

(
h̃T
k ⊗ g̃T

k

)
∆x̃v = b̃T

k∆x̃v.
(33)

According to (29) and vec (AXB) =
(
BT ⊗A

)
vec (X), we

have

∆x̃v =

 1
2 vec

(
QH

N v
∆Xv

)
+ 1

2 vec
(
QT

N v
∆X∗

v

)
1
2j vec

(
QH

N v
∆Xv

)
− 1

2j vec
(
QT

N v
∆X∗

v

)
=

 1
2

(
I⊗QH

N v

)
ΓF∆r+ 1

2

(
I⊗QT

N v

)
ΓF∆r∗

1
2j

(
I⊗QH

N v

)
ΓF∆r− 1

2j

(
I⊗QT

N v

)
ΓF∆r∗


=

[
K∆r+K∗∆r∗

−jK∆r+ jK∗∆r∗

]
.

(34)

Substituting (34) into (33) yields

∆µ̃k =
[
b̃T
1k, b̃T

2k

] [ K∆r+K∗∆r∗

−jK∆r+ jK∗∆r∗

]
=

(
b̃T
1k − jb̃T

2k

)
K∆r+

(
b̃T
1k + jb̃T

2k

)
K∗∆r∗

= 2ℜ
(
cTk∆r

)
.

(35)

For ck, the following Lemma holds true.
Lemma 2: With Ck = matNp,Np (ck), there is Ck = CH

k .
Proof: Following a similar process as that in [19, Lemma

4], the necessary condition of the lemma is

Q∗
N v

g̃k(h̃
T
1k − jh̃T

2k) = ΠN v

[
Q∗

N v
g̃k(h̃

T
1k − jh̃T

2k)
]∗
ΠN v

⇔
(
Ṽs1 − jṼs2

)
Σ̃−1

s q̃kp̃
T
k (J̃1Ũs)

†(J̃2−
µ̃kJ̃1)ŨnŨ

H
n QH

N v
= (36a)

ΠN v

[(
Ṽs1 − jṼs2

)
Σ̃−1

s q̃kp̃
T
k (J̃1Ũs)

†(J̃2−

µ̃kJ̃1)ŨnŨ
H
n QH

N v

]∗
ΠN v

, (36b)

where h̃1k, h̃2k ∈ RN v×1 and h̃k = [h̃1k, h̃2k], Ṽs1, Ṽs2 ∈
RN v×K . Since

(
Ṽs1 − jṼs2

)
Σ̃−1

s Ũs =
(
QH

N v
Xv0

)†
,

QH
N v

Av = ŨsT̃, q̃k = T̃ek, p̃T
k = eTk T̃

−1, (J̃1Ũs)
† =

T̃(J̃1Q
H
N v

Av)
†, and p̃T

k (Ψ̃µ̃−1
k − I) = 0, the term in (36a) is

simplified to(
Ṽs1 − jṼs2

)
Σ̃−1

s q̃kp̃
T
k (J̃1Ũs)

†(J̃2 − µ̃kJ̃1)ŨnŨ
H
n QH

N v

=
(
QH

N v
Xv0

)†
QH

N v
Aveke

T
k T̃

−1T̃(J̃1Q
H
N v

Av)
†

(J̃2 − µ̃kJ̃1)Q
H
N v

=
(
AH

v

)†
P−1eke

T
k (J̃1Q

H
N v

Av)
†(J̃2 − µ̃kJ̃1)Q

H
N v

.

(37)
and the term in (36b) can be simplified similarly. It is
equivalent to proving the following two equations:

ΦN v−1
(
J̃1Q

H
N v

Av
)†
J̃1Q

H
N v

ΠN v
=

[
(J̃1Q

H
N v

Av)
†J̃1Q

H
N v

]∗
(38)

and

ΦN v−1
(
J̃1Q

H
N v

Av
)†
J̃2Q

H
N v

ΠN v
=

[
(J̃1Q

H
N v

Av)
†J̃2Q

H
N v

]∗
.

(39)
Since QH

N v
ΠN v

= QT
N v

, we only need to prove that

ΦN v−1
(
J̃1Q

H
N v

Av
)†

=
[(
J̃1Q

H
N v

Av
)†]∗

. (40)

Then, with J̃1Q
H
N v

= 1
2Q

H
N v−1

(
J1 + J2

)
, we have

ΦN v−1
(
QH

N v−1
Av1

)†
=

[(
QH

N v−1
Av2

)†]∗
⇔ Φ

[(
AH

v1Av1

)−1

AH
v1

]∗
ΠN v−1QN v−1

=
[(

AH
v2Av2

)−1

AH
v2QN v−1

]∗
⇔ Φ

(
A†

v1

)∗
=

(
A†

v2

)∗
⇐ Av1Φ = Av2,

(41)

which completes the proof of Lemma 2.
Following a similar process in obtaining (26), the MSE of

eigenvalue is E
(
∆µ̃2

k

)
= 4

T ℜ
[
cHk

(
R⊗RT

)
ck

]
. With the

relationship of µ̃k = tan
(
− πd

λ sin θk
)
, we can derive that

E
(
∆θ2k

)
=

λ2E(∆µ̃2
k)

π2d2 cos2 θkT(1+µ̃2
k)

2 , (42)

which completes the proof of Proposition 2.

IV. SIMULATION RESULTS

In this section, the experimental root mean square error
(RMSE) results of ESPRIT-type methods (including co-array-
based standard ESPRIT method and co-array-based unitary
ESPRIT method) via Monte Carlo simulations with 1000
trials are compared with the derived asymptotic theoretical
performance bounds ((14) and (32)) and also CRBs [19]. The
nested array with 6 sensors is considered with sensors located
at {0, 1, 2, 3, 7, 11}d, and the unit inter-element spacing is
d = λ

2 . The underdetermined case is examined with K = 9
sources uniformly distributed within θ ∈ [−60◦, 60◦], and the
sensor number exceeds the number of physical sensors.

The MSE results versus input SNR are shown in Fig. 1(a)
with the number of snapshots set to T = 300. It is observed
that the experimental RMSE results converge to our theoretical
performance bounds for SNR larger than 5 dB. The CRB
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Fig. 1. Experimental and theoretical asymptotic RMSE results of co-array-
based ESPRIT-type methods.

is lower than both the experimental and theoretical results,
indicating that the derived explicit performance bounds are
sufficiently tight to evaluate the DOA estimation performance
of corresponding methods.

Then in Fig. 1(b), the MSE results with respect to the
number of snapshots are included with SNR fixed at 10
dB. Clearly, the empirical RMSE results approximate the
theoretical performance bounds for T ≥ 100, and the derived
explicit bounds are more suitable as performance evaluation
tools.

V. CONCLUSION

In this paper, the performance for DOA estimation of
ESPRIT-type methods was analyzed. The co-array-based stan-
dard ESPRIT method was first considered with closed-form
expression of its performance bound for DOA estimation
derived. Then, we focused on the co-array-based unitary ES-
PRIT method, and derived an explicit asymptotic performance
bound. As verified by simulations, existing CRB is loose for
evaluation of ESPRIT-type methods, while the derived bounds
are tight and effective.
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